
PUBLISHING:

A Reliable Broadcast Communication Mechanism

by

David Leo Presotto

Copyright © 1983 David L. Presotto

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 1983 2. REPORT TYPE

3. DATES COVERED
 00-00-1983 to 00-00-1983

4. TITLE AND SUBTITLE
PUBLISHING: A Reliable Broadcast Communication Mechanism

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Today’s computing environment is becoming increasingly more distributed. Due to their flexibility and
inherent parallelism, distributed systems can be both more personalized and more powerful than
centralized computers. However, with their qualitative and quantitative increases in complexity,
distributed systems are more susceptible to failure. One way of increasing the reliability of these systems is
to recover from faults before they lead to failures. A number of methods have already been developed to
perform fault recovery in distributed systems: recovery lines, recoverable transactions, and shadow
processes. In order to effect time-bounded recovery, each of these methods requires interaction with the
user application. This interaction may sometimes fit naturally into the application program. However, in
many instances, the lack of transparency of the recovery system may significantly restrict the application
programmer’s style. Also, existing programs need to be rewritten to make use of these methods. Making
recovery transparent to the program being recovered is, in the most general case, a difficult and, perhaps,
unsolvable problem. However, by considering only message-based systems, the problem can be greatly
simplified. Message-based systems, especially those connected by low cost broadcast media, represent the
most common type of distributed system. We have developed a new communications model for such
systems called published communications. In this model, a passive recorder reliably stores all messages
broadcast onto the network. Coupled with the idea of deterministic programs, published communications
allows the transparent recovery of processes in a distributed system. In order to evaluate the consistency of
the model with message-based systems, an initial implementation has been added to an existing
message-based system, DEMOS/MP to the model. However, it was not necessary to change any programs
already running on the system. The performance of published communications was determined both by
evaluating a queuing model of the system under different loads and by measuring the DEMOS/MP
implementations. The simulation shows that recorder, constructed from current technology, can support a
system of up to 115 users. The measurements show that the steady state costs of publishing messages is low.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

84

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ACKNOWLEDGEMENTS

A number of people, either directly or indirectly, helped in this research

and influenced its direction. The quality of this thesis is mostly due to the

helpful criticisms and suggestions of my committee. Michael Powell, my advi

sor, originally suggested this thesis. As my advisor, he has given me many use

ful insights into Computer Science and has taught me the meaning of research.

During the implementation, as one of the original authors of DEMOS, he pro

vided much needed knowledge and experience. Elwyn Berlekamp, besides his

helpful editorial criticisms, was responsible for giving me a new viewpoint from

which to consider system reliability, that of algebraic coding theory. Lucien

LeCam provided many useful suggestions concerning the style and form of this

thesis.

In addition to my committee, two other people were directly involved in

this research. Bart Miller, my co-researcher in the DEMOS/MP project,

helped in many of the kernel changes necessary for the implementation of pub

lishing and provided the metering system used to obtain the DEMOS/~IP

measurements in Chapter 5. He also acted as a sounding board for many of

the ideas used in this thesis. Domenico Ferrari supervised the queuing simula

tions in Chapter 5 and offered many suggestions concerning their evaluation.

This research could not have been performed without a conducive and

stimulating environment. For this, I thank all the members of the Computer

Science Division at Berkeley. In particular, I wish to thank the members of

the OSMOSIS and CSR groups for their participation in thought provoking

seminars. I also wish to thank Bill Joy and Sam Leffler for the interprocess

communications in the 4.2 Berkeley Software Distribution of UNIX.

A thesis is more than a research contribution, the proposal and evaluation

of new idea. It is a rite of passage that gets exponentially more difficult as one

approaches the end. I could not have endured it without the help and support

of my girl friend, Caryl Carr.

This research was supported by National Science Foundation grant MCS-

8010686, the State of California, and the Defense Advance Research Projects

Agency (DoD) Arpa Order No. 4031 monitored by the Naval Electronic Sys

tem Command under Contract No. N00039-82-C-0235.

11

TABLE OF CONTENTS

Acknowledgements

Table of Contents .. n

List of Figures .. v

Chapter 1. The Recovery Problem ... 1

1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.2

Formal models and definitions

A model of a distributed system

Fault classification and crashes

Process Recovery .. .

The problem of distributed recovery

An ideal recovery mechanism

Thesis plan

5

5

7

7

8

10

11

Chapter 2. Survey of Distributed Recovery 12

2.1
2.2
2.3
2.4

Recovery lines

T t
. .

ransac 1on processing

Shadow processes .. .

Summary .. .

12
15
16
16

Chapter 3. A Solution - Published Communications 18

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4

Published Communications

Meeting the goals of the ideal system

Independent process recovery ~

Transparency of recovery mechanism to programs

Arbitrarlly bounded recovery time

Low cost .. .

18
19

19

20

20

23

lll

3.3 Published Communications .. 24

3.3.1 Storing Messages and Checkpoints .. 25

3.3.2 Detecting Crashes 25

3.3.3 Recovering processes 26

3.3.4 Recorder recovery 27

3.4 Recursive crash of the recorder 28

3.5 Recursive crash of a process .. 29

3.6 Limitations ... 29

3.7 Related systems ... 29

Chapter 4. An Implementation ... 31

4.1

4.2

Experimental Environment

DEMOS .. ~

31

32

4.2.1 Organization .. 32

4.2.2 DEMOS interprocess communications 33

4.2.2.1 Links .. 33

4.2.2.2 Channels .. 34

4.2.2.3 Messages .. 35

4.2.3 Process control ... 35

4.3 Distributing DEMOS ... 36

4.3.1 Network wide process names ... 36

4.3.2 Remote process creation .. 36

4.3.3 Remote message routing .. 37

4.4 Making DEMOS/MP compatible with published communi-

cations .. 39

4.4.1 Publishing messages before they are used 40

4.4.2 Message ordering at the recorder matches that at the pro-

cess

4.4.3

4.5

4.6

4.7

Processes interact only via messages

Publishing messages .. .

Failure detection

Recovering processes

41

41

45

46

47

Chapter 5. Performance Studies ... 48

iv

5.1 A Queuing Model Simulation .. 48

5.2 Measurements of the DEMOS/MP implementation 53

5.2.1 Processing node costs ... 54

5.2.2 Publishing time for messages ... 56

Chapter 6. Extensions and Applications 57

6.1

6.1.1

6.1.2

6.2

6.3

6.4

6.5

6.6

6.6.1

6.6.2

6.7

Getting messages to the recorder .. .

Ethernets .. .

Token rings

Other configurations

Multiple recorders for reliability

Transactions using published communications

Debugging using published messages

Optimizations

Not recovering all processes .. .

Recovering nodes rather than processes

Summary .. .

57

57

59

60

60

62

62

63

63

63

65

Chapter 7. Conclusions 67

7.1 Future Work 67

Bibliography 69

v

LIST OF FIGURES

1.1 A XEROX STAR Configuration 2

1.2 Process Checkpointing .. 9

2.1 Finding recovery lines 13

2.2 Directional interactions ... 14

3.1 Calculating recovery times 22

3.2 Publishing System Before Failure ... 24

3.3 Recovering a Process 26

4.1 Experimental Configurations ... 32

4.2 DEMOS Kernel Organization ... 33

4.3 Network Interface Organization ... 38

4.4 Actions taken by MOVELIT\i'K .. 43

4.5 Actions taken by the new MOVELINK .. 45

5.1 The Open Queuing Model ... 49

5.2 Hardware Parameters for the Queuing Model 49

5.3 State Sizes for UNIX Processes ... 50

5.4 Operating Points for the Queuing Model .. 51

5.5 Percent Utilization of System Components 53

5.6 A program to measure message costs .. 55

5. 7 Per Message Overheads ... 55

5.8 Per Process Overheads .. ."......... 56

6.1 Lightly loaded network ... 58

6.2 Heavily loaded network .. 58

6.3 A message In a ring ... 59

6.4 Token ring with acknowledge ... 60

1

PUBLISIDNG: A Reliable Broadcast Communication ~1eehanism

David Leo Presotto

Ph.D.

Sponsors
National Science Foundation
State of California

Computer Science Division

Department of Electrical Engineering
and Computer Sciences

Defense Advanced Research Projects Agency
Michael L. Powell

Committee Chairman

ABSTRACT

Today's computing environment is becoming increasingly more distri

buted. Due to their flexibility and inherent parallelism, distributed systems

can be both more personalized and more powerful than centralized computers.

However, with their qualitative and quantitative increases in complexity, dis

tributed systems are more susceptible to failure. One way of increasing the

reliability of these systems is to recover from faults before they lead to

failures.

A number of methods have already been developed to perform fault

recovery in distributed systems: recovery lines, recoverable transactions, and

shadow processes. In order to effect time-bounded recovery, each of these

methods requires interaction with the user application. This interaction may

sometimes fit naturally into the application program. However, in many

. instances, the lack of transparency of the recovery system may significantly

restrict the application programmer's style. Also, existing programs need to be

rewritten to make use of these methods.

Making recovery transparent to the program being recovered is, in the

most general case, a difficult and, perhaps, unsolvable problem. However, by

considering only message-based systems, the problem can be greatly simplified.

Message-based systems, especially those connected by low cost broadcast

media, represent the most common type of distributed system. We have

developed a new communications model for such systems called published

communications. In this model, a passive recorder reliably stores all messages

broadcast onto the network. Coupled with the idea of deterministic programs~

published. communications allows the transparent recovery of processes in a

distributed systems.

In order to evaluate the consistency of the model with message-based sys
tems, an initial implementation has been added to an existing message-based

system, DEMOS/MP. A number of minor changes were necessary to conform
DEMOS/MP to the model. However, it was not necessary to change any pro

grams already running on the system.

The performance of published communications was determined both by
evaluating a queuing model of the system under different loads and by measur
ing the DEMOS/!\1P implementations. The simulation shows that recorder,

constructed from current technology, can support a system of up to 115 users.
The measurements show that the steady state costs of publishing messages is

low.

1

CHAPTER 1

The Recovery Problem

Ever lowering costs and rapid advances in technology have made com
puter science one of the fastest changing areas in science. Today's computing

environment is becoming increasingly more decentralized. Low cost processors

and peripherals allow users to have personalized systems suited to their partic
ular needs. At the same time, high bandwidth, low latency computer com
munications, especially those for local area networks, allow these users to

access jointly held reso'lrces.

A popular use for these decentralized systems is the automated office. In
an automated office each person uses a small, usually low cost, personal com

puter configured to his/her particular needs. For example, secretaries may
have inexpensive processors to perform word processing functions such as

letter preparation. Engineers, on the other hand, may need processors
outfitted with mice and high quality displays for computer aided design. More
expensive resources such as high quality printers and telex machines would be
accessible by all of these computers via a network. Figure 1.1 shows a typical

configuration for the XEROX STAR, an office system marketed by the
XEROX Corporation. (The diagram is from a XEROX publicity brochure. It
was generated on a XEROX STAR workstation.)

2

Ethernet

Star File Server Print Server Com. Server

Figure 1.1: A XEROX STAR Configuration

Decentralized systems are also used to increase the speed of computation.

Often, computations can be decomposed into a number of smaller computa

tions, each of which may execute in parallel on a separate computer. These

computations may take much less time than the equivalent sequential compu

tation on a single computer, if the time taken up by management of and com

munications between the parts is low enough. Recently, such parallel compu

tations have become important in the field of cryptoanalysis. Many codes that

were once thought to be secure have been shown to be susceptible to exhaus

tive analysis attacks by large numbers of computers. Diffie and Hellman[Diffie

and Hellman 77], for example, have shown how to break the National Bureau

of Standards data encryption standard (~13S/DES) [NBS 75a,~13S 75b] using a

network of one million computers. A controlling computer partitions the

search space into one million parts and notifies each of the others which part it

must search. The computers then exhaustively search their partitions of the

space. When one finds a solution, it informs the controller and all are stopped

and given a. new problem. With parallel computation, the NBS/DES code

might be broken in less than a day.

These two examples are illustrative of a. type of computing, distributed

computing. Specifically, a. distributed computation is one in which a. number

of concurrently executin~ programs cooperate to perform the computation. In

the decentralized systems just described, distributed computations are used to

take advantage of resource sharing and overlapped execution. Programmers

3

also distribute computations for the same reasons they use subroutines, to

modularize their programs. Separating a computation into a number of

cooperating programs, each running in its own address space, can often lead to

better understanding and easier debugging than would a monolithic organiza

tion. The DEMOS operating system, described in Chapter 4, is an example of

a system organized as a distributed computation for just this reason.

4

For distributed systems, as for other types of systems, reliability is an

important issue. Brian Randell provides an excellent description of

reliability[Randell et al 78] :

The reliability of a system is taken to be a measure of the success with which

the system conforms to some authoritative specification of its behavior.

Without such a specification, nothing can be said about the reliability of the

system. When the behavior of the system deviates from that which !s

specified for it, this is called a failur~. A failure is thus an event, with the re

liability of the system being inversely related to the frequency of such events.

Various formal measures related to a system's reliability can be based on the

actual (or predicted) incidence of failure (see, for example, [Shooman 68]).

These measures include Mean Time Between Failure (MTBF), Mean Time

Between Repair (MTBR), and availability, that is, the fraction of the time

that a system meets its specification.

In some distributed systems, increasing reliability is a critical problem. For

example, Hellman and Diffie expect that their system would normally have a

mean time between failure of 6 minutes. Since they expect the system to take

a full day to crack one code, this reliability is unacceptable and must be

increased.

To understand how reliability can be increased, one must understand the

difference between a failure and a fault. We have defined a failure as a devia

tion from an authoritative description of the system. A fault is the immediate

mechanical or algorithmic cause of the failure. For example, an alpha particle

may cause an illegal state change in a processor register or memory location.

If a program then uses that register in a calculation, the result of the calcula

tion would be incorrect. Here, the register state change is the fault and the

incorrect calculation is the failure.

Obviously, a system's reliability can be increased by decreasing the fault

rate. For instance, lead shielding will decrease the number of alpha particles

striking the register. However, in trying to reduce the the rate at which a par

ticular fault occurs, we must take into account all potential causes of the fault.

Different causes may be related such that avoiding one may exacerbate

another. For instance, if the lead shielding made it difficult to cool the proces

sor, the resultant overheating could cause more faults, canceling the advantage

of the shielding.

Assuming that some faults are unavoidable, we can improve reliability by

preventing the fault from leading to deviation from the "authoritative

definition", that is, we can isolate the fault and undo its effects before it causes

the system to malfunction. 'Ve call this action recovf.ring from the fault.

Fault recovery can occur at many different levels of a system. For instance,

the illegal register state can be detected when the register is accessed by

5

storing a checksum of the register in the processor state. The fault could then

be corrected immediately using the redundant information. If this is not possi

ble, the entire calculation would need to be aborted and restarted to make

sure no erroneous results are propagated.

As we show later in this chapter, recovery in a distributed system is con

siderably more difficult than in a centralized system. It is the subject of this

thesis to study this problem and to present a solution.

1.1. Formal models and definitions

Before developing a solution to the problem, we need a more precise

definition of what the problem is. In this section, we define our domain of

interest, distributed systems, the problem, faults, and the solution, fault

recovery.

1.1.1. A model of a distributed system

\Ve have already defined what distinguishes a distributed system. It is

any system which makes use of or supports the use of distributed computa

tions. In this section, we present a model of a distributed system consistent

with this definition.

A distributed computation is a set of concurrently executing programs

which cooperate to perform a computation. These programs communicate

with each other and with peripheral and storage devices, such as clocks, termi

nals, printers, and disks. Both the executing programs and the devices can be

modeled by what we call processes. A process is an object that contains state

information, that can change its state information, and that can interact with

other processes by changing their states. Processes are capable of concurrent,

independent, and possibly unsynchronized execution. Execution is the act of

changing the state of a process.

For processes representing executing programs, the state consists of:

• the writable address space of the process, normally the variables used by

the program

• information related to the sequencing of the program such as the program

counter and the execution stack

• information managed by other parts of the system for the process, such as

unread messages or device buffers

The process state can change either as a result of execution of the next

instruction of the program that it represents or via interactions with other

processes.

6

A process representing a device is made up of both the device and any

software used to control the device (often called a device driver). A disk pro

cess, for example, is the disk itself, its controller, and the disk driver running

on the processor to which the disk is attached. Its state is made up of the

variables used by the driver, the internal registers of the controller, and the

information written on the disk. As another example, a line printer is a pro

cess whose state consists only of the variables used by its driver and the regis

ters in the printer.

If a process is considered a "black box", we can characterize its behavior

by observing its interactions with other processes. A process is said to be

deterministic upon its input interactions if, each time it is started and receives

the same input interactions, it will produce the same output interactions.

Most processes are, by this definition, deterministic. The reasons for this

are twofold. First, deterministic processes are much easier to debug since

problems occurring in these processes can be easily reproduced. Second, tradi

tional processors and programming languages are designed to support sequen

tial deterministic execution. Therefore, it is natural to write deterministic pro

grams for these processors and with these languages.

Nevertheless, non-deterministic processes do exist. In the case of device

processes, the cause is the non-determinism of the devices themselves. For

example, a disk process may schedule requests according to the position of the

movable disk arms in order to improve throughput. The ordering of output

interactions from the disk may thus depend not only on the input interactions

but also on disk arm position and varying speeds of disk arm movement. In

the case of processes representing programs, non-determinism is caused by gen

erating output dependent on the amount of execution time allowed the pro

gram between inputs. For example, in UNIX, a typical way of measuring the

idle time of the system is to create a low priority process that will execute

whenever no other processes can execute. The program consists of a tight

loop, whose execution time can be accurately determined. The program can,

therefore, determine its running time from the number of iterations through

the loop. On request, it returns its execution time. Such a program is non

deterministic since its outputs depend on the timing of requests to it and not

upon the requests themselves.

\Ve claim that non-deterministic processes are few in number. This is

partially substantiated by our examination of UNIX and DEMOS processes. In

both cases non-determinism existed only in a few device drivers and in pro

grams which were easily changed to be deterministic. Therefore, i.'l this thesis,

we present a general recovery mechanism only for deterministic processes. \Ve

assume that other mechanisms can be used for the few non-deterministic

i

processes that exist or that those processes can be transformed into determinis

tic ones.

1.1.2. Fault classification and crashes

For the purposes of our study, we can classify a fault according to two

characteristics: whether or not the fault is detected, and whether or not it is

deterministic.

A fault is considered undetected if it is not detected by the affected pro

cess or by the system before it can alter the state of some other process.

Undetected faults correspond to what Lampson and Sturgis call "unexpected

undesired events"(Lampson and Sturgis 7Q]. Since they do not cause the

recovery mechanism to be initiated, these faults will become failures.

A deterministic fault is one that is algorithmic in nature and thus a pro

perty of the process itself. Since we are assuming deterministic processes, such

faults will recur whenever the process is recovered following detection of the

fault. Deterministic faults can be recovered from only if the programmer sup

plies alternate algorithms to be used should a fault be detected in the pro

gram. Thus, deterministic faults can be avoided only by a non-deterministic

program. Since, as we state later in this chapter, one of our goals is tran

sparent recovery, we consider only non-deterministic faults in this thesis.

A crash is defined as the halting of a process on the detection of a fault.

Since a crash is defined in terms of processes, the failure of a processor can be

thought of as the crash of all processes in that processor. In fact, where con

venient, the system is permitted to "round up" any system fault to a crash of

all the processes affected by the fault.

1.1.3. Process Recovery

Process recovery is the act, following a crash, of returning a process to a

consistent state from which it can proceed as if the crash had not occurred.

Recovery requires the ability to preserve information across a crash and the

ability to construct a consistent state using the information so preserved.

Information is preserved across a crash in a non-volatile storage facility,

that is, one that has low probability of being altered by the crash. This is usu

ally achieved by storing the information on devices whose failure modes are

decoupled in some way from those of the other elements of the system. Often

the information is also duplicated to ensure against single failures of the

storage facility. A number of techniques for reliable non-volatile storage have

been developed, including WT's Swallow system [Svobodova 80,A.rens 81] and

Lampson's and Sturgis's stable storage[Lampson and Sturgis 7Q].

8

To allow the reconstruction of consistent states of processes, it is common

to occasionally make copies of part or all of the process state. Making copies

more often can reduce the time to perform recovery. In this thesis, we call the

information necessary to reconstruct a complete process state at some point in

time a checkpoint. The entire state of a process may be large, and techniques

exist for recording only the parts of the process state necessary to reconstruct

the complete state. To reduce the cost of making repeated copies as the pro

cess state changes, the system will make copies of the complete state only

infrequently, and will usually make a copy of just that part of the state that

has changed since the previous checkpoint.

Doing recovery in a multiprocess environment is more difficult for two

reasons: the checkpoints must provide enough information to create a con

sistent state among several interacting processes, and the recovered processes

must be brought back to a consistent state with processes that did not fail.

1.1.4. The problem or distributed recovery

For an isolated process, determining a consistent state is no problem -

any complete state is consistent. However, sets of processes that interact must

be checkpointed in such a way that all the separate checkpoints are consistent

with one another in light of the interactions. Consider, for example, the three

processes with the interactions shown in Figure 1.2, adapted from[Randell 78].

process A

process B

process C

1_ ••• ••

.·-·I
.- IX

- interaction J -checkpoint

Checkpoint sets 1 and 2 are consistent.
Checkpoint set 3 is not.

Figure 1.2: Process Checkpointing

9

" time

~ time

The horizontal axis represents time (increasing left to right). The dashed vert
ical lines represent interactions between two processes. During an interaction,
both processes may communicate information to each other. The square
brackets represent the checkpoints of individual processes. The following rule
can be used to determine consistent checkpoints:

Rule 1: Since processes are deterministic upon their interactions, check
points for any two processes are consistent as long as the processes do not
interact with each other between the times the checkpoints are taken.

Represented graphically, if a line connecting a set of checkpoints intersects no
interaction lines, then those checkpoints are consistent. \Ve call this line (or
set of checkpoints) a recovery line.

Figure 1.2 shows two sets of consistent checkpoints. The checkpoints
labeled 1 represent the starting states of all three processes and are therefore
consistent. The checkpoints labeled 2 are consistent since no interactions
separate them. However, checkpoint set 3 represents an inconsistent view. If
the processes are restarted from these checkpoints, process A will have seen
the results of the interaction labeled X, but process B will not. Thus, check
point set 3 could not be used; instead, it would be necessary to go to check
points older than the most recent set.

10

Any recovery method for distributed computing must therefore determine
consistent states for all recovered processes. It must also ensure that those

states are consistent with the current states of any non-recovered processes.
An inconsistent checkpoint can be used only if the interaction accounting for
the inconsistency can be reproduced in order to eliminate it.

1.1.5. An ideal recovery mechanism

Having defined the problem, we can now describe the properties an ideal
recovery mechanism should have. The environment we are aiming for is the

general purpose distributed system supporting many users. Special purpose or

single user environments are less interesting to us since, in this type of system,
custom mechanisms designed for the specific application are usually better
than any general purpose mechanism.

In a general purpose system, a recovery mechanism should exhibit the fol

lowing properties:

• Independent process recovery - Recovery should require the minimum
possible perturbation to non-failing parts of the system. This means that
processes should be individually recoverable, despite interactions with
other processes. Recovery may slow down non-failing processes, but it
should not cause them to be restarted.

• Transparency of recovery mechanism to programs - Programs
should not need to be aware of or interact with the recovery mechanism.
It should not be necessary for the programmer to change his programming
style to please the system. This allows naive users to write recoverable
distributed computations without having to learn how to use the recovery

system. It also allows existing programs to be made recoverable without
being changed.

• Arbitrarily bounded recovery time - It should be possible for the
programmer to specify maximum recovery times for individual processes.
This means that processes should be checkpointed independently. This
allows checkpoint frequencies to be specified on a per process basis, allow
ing individual recovery time bounds to be placed on the processes. This

also ensures that the steady state actions of the recovery system are sim
ple and efficient when no processes are being recovered.

• Low cost - Though the cost of storing the recovery information will be
noticeable, it should not be excessive. No recovery mechanism will be

widely accepted if it requires too sizable a portion of the system's
resources.

These properties represent the ideals that this thesis hopes to approach.

11

1.2. Thesis plan

Chapter 2 reviews a number of current recovery methods. It discusses

their advantages and weaknesses in the light of the ideal system.

Chapter 3 introduces our solution to recovery, published communications.

A design of a published communications system is outlined.

Chapter 4 reports our work in adding published communications to an

existing system, DEMOS/.MP. Necessary changes to the system structure are

discussed.

Chapter 5 discusses the performance of published communications in a

distributed environment. The chapter is divided into two parts. The first

presents a queuing model for an Ethernet-based system with up to five proces

sors. The model is solved numerically. The second part presents measure

ments of the DE~10S/rv!P system both before and after publishing is added.

In Chapter 6, we offer network specific solutions for ensuring that all mes

sages are published before being used. We also present some variations on

publishing.

Chapter 7 concludes the thesis by summarizing what we have accom

plished and by suggesting future research that can be built upon our work.

12

CHAPTER 2

Survey of Distributed Recovery

Chapter 1 described the main problem of recovery, that of returning the

faulted system to a consistent state from which it may continue. A number of

recovery mechanisms have been built to solve this problem. In general, they

can be classified as belonging to one of four classes:

1) recovery lines

2) recoverable transactions

3) shadow processes

4) reliable messages

This chapter presents the first three and explains what their advantages and

failings are, in light of the ideal system of Chapter 1. Discussion of reliable

messages is left to Chapter 3 since it relates directly to the work presented

there.

2.1. Recovery lines

One way of recovering processes is to independently generate checkpoints

for them and, following a crash, to look through the stored checkpoints for a

set of consistent ones at which to restart processes. The set of consistent

checkpoints is termed a recovery line[Randell 75]. As we stated in Chapter 1,

checkpoints for two processes are consistent if, between the the times the

checkpoints are taken, no interactions occur between the processes. A

recovery system can detect this, either by monitoring the interactions and

checkpoints as they happen or by scanning a history of interactions and check

points after a crash has occurred.

13

process A 1 1 1 J @~m•
X1 3

I

process B 1 1 J,ot) time

process C 1 l l OJ+-) time

Rings slide left to next checkpoint.

Figure 2.1: Finding recovery lines

To see how consistent checkpoints can be found, consider Figure 2.1. It
represents the history of interactions and checkpoints for three processes. Fol
lowing a crash, we place a ring on the time axis for each process. Note that,
for processes that have not crashed, we can consider the current state of the
process a checkpoint. On each iteration of the search algorithm, we let the
rings slide back in time (to the left) to the nearest checkpoint on that axis.
Whenever a ring slides through an interaction line, all checkpoints to the right
of the interaction line for the interacting processes are invalidated, thus allow
ing rings on those lines to slip further. The algorithm terminates when an
iteration occurs without any slips. At this point the rings should be at a con
sistent set of checkpoints from which we may restart the processes.

As an example, assume that in Figure 2.1 process B has crashed. Its ring
will slip to checkpoint 3. In passing interaction X, it will cause process A's
ring, on the subsequent iteration, to slip to its checkpoint 2. The algorithm
will continue until all three rings stop at the checkpoints labeled 2.

For the recovery system to find recovery lines, it must "see" all interac
tions and checkpoints. In systems with a formal communications mechanism,
the communications mechanism itself can inform the recovery system, making
the building of interaction histories transparent to the process. In shared
memory systems, the programmer must do the informing since interaction
between processes cannot be intercepted by the system. Providing this infor
mation does not constrain the programming style in any significant way, so
this requirement is not a major violation of the ideal of transparency.

14

Researchers at the University of Newcastle[Randell 75] have used

recovery lines and independent checkpointing in their recovery block systems

to recover communicating processes. Although their systems have been cen

tralized, there is nothing to indicate that the same techniques would not also

work for decentralized systems. However, they point out one major disadvan

tage: there is no guarantee, with independent checkpoints, that a recovery

line, other than the starting state of all processes, will exist. Therefore, the

amount of work to be redone, following recovery, can be arbitrarily long.

Attempts have been made to remedy this situation. The normal recovery

line model assumes that any interaction that occurs between checkpoints

makes those checkpoints inconsistent. This is because we know nothing about

the information flow occurring in the interaction. However, Russell points out

that, in the case of message based systems, all interactions are actually

directional[Russell 77]. He proposes saving messages and then replaying them

to processes after they restart at a checkpoint.

process A l X l j ~ time
I X 3

process B l
I

1 1 .,!,
A

.,!,
A

.,!, ~ time

process C l l 1 ~ time

All interactions are messages.

Figure 2.2: Directional interactions

To understand what Russell means, consider the example in Figure 2.2.

Suppose the interaction X were a message from process A to process B. After

the crash of process B, we could restart it at checkpoint 3 and replay message

X to it without affecting any other processes. However, if the message were

from process B to process A we could not do so, since process B would resend

the message and process A would receive it twice. Also, since Russell assumes

processes to be non-deterministic, there is no guarantee that the process will

resend that message after restart.

In this case we can change the consistency requirement for checkpoints

(Rule 1) to be:

15

Rule 2: Checkpoints for two processes are consistent if and only if,

between the the times the checkpoints are taken, no message is sent from

the process with the earlier checkpoint to the process with the later

checkpoint.

Unfortunately, Russell's approach lessens but does not solve the problem.

We will refer back to this solution later on since it comes very close to the

concept of published communications.

2.2. Transaction processing

Another way of obtaining a consistent state, which has been widely used

in distributed database systems, is transaction processing[Gray 78, Skeen and

Stonebraker 81). Rather than have the system search for recovery lines, all

inconsistent states are enclosed within programmer specified transactions. A

transaction always takes the system from one consistent state to another. The

interacting processes declare when a state is consistent, and the system

prevents updates from taking effect until another consistent state can be

reached. This is done using stable storage. Until reaching the commit point,

when all processors taking part in the transaction will have stored away all

partial results in stable storage, all updates are considered tentative. If any

process fails before that point, all processes abort and the transaction has no

net affect. After all processes taking part agree that they have reached the

commit point, they are committed to finish even if they crash and are res

tarted. Applications are designed so that the state of a process between tran

sactions is unimportant and need not be checkpointed. This is equivalent to

saying that the the initial state of a process is its checkpoint.

For data base applications, transactions are natural constructs. Even if

they were not used for recovery, they would probably be used for concurrency

control. In such applications, expressing all computations as transactions, in

order to allow them to be recovered, will not cause seriously change his style

of programming. This is not true of all applications. In distributed computa

tions where data is pipelined from one process to another, such as graphics

applications, the transaction is not a natural unit. In such situations, transac

tions violate our ideal of programmer transparency.

Transactions also violate the goal of independent process recovery. If a

crash occurs in the middle of a transaction, all of the processes involved may

have to start over. The result is that much work has to be redone. Liba

Svobodova(Svobodova 81] tries to reduce the amount of work redone by

hierarchically nesting transactions. In her model, complex transactions can

perform their work by decomposing themselves into a number of sub

transactions. The sub-transactions can, in turn, be decomposed into other

16

sub-transactions and so on. When a fault occurs, instead of restarting the

whole transaction, we can restart just the sub-transactions that were in effect

at the time of the fault. Unfortunately, this is done at the expense of making

the recovery mechanism even more restricting of programming style.

2.3. Shadow processes

A recovery method for message-based distributed systems is the concept

of shadow processes, introduced in the Tandem Corporation's Non-Stop

systems[Bartlett 81]. ·with shadow processes, we assume that each process (the

primary) has another another process (the shadow) that runs in tandem with

it. Should the primary process fail, the shadow process is ready to take on any

tasks normally performed by the primary. Obviously, the shadow process

should run on equipment that is not likely to fail along with that of the pri

mary process. In order for it to take over, the shadow process's state must be

kept up to date with that of the primary. This can be done by having the

shadow receive all inputs that the primary does and duplicating all its actions.

However, in practice, this is not done for two reasons. The first is that some

method would have to be found to make sure the shadow did not interfere

with the primary. For instance, if the primary outputs to a terminal, we

would not want the shadow to repeat the action. Second, by having both

processes perform the same actions, to achieve similar throughput, a shadow

system would need twice as much computing power as a system without sha

dow processes. Many people are reluctant to double the cost of their equip

ment for reliability.

Instead, the shadow process is periodically updated to reflect the state of

the primary. In the Tandem system, the shadow's state is updated by mes

sages sent to it from the primary. It is the programmer's responsibility to

make sure the shadow is correctly updated. Should the primary crash, all

messages that would normally be received by it are rerouted to the shadow.

Thus, there is no need for recovery lines or transactions.

Shadow processes achieve a number of the goals of the ideal system. The

equivalent of checkpointing, bringing the shadow up to date, is performed

independently for all processes. Processes are also individually recoverable.

However, the mechanism is not transparent to the user since it is left to the

user to update the shadow process.

2.4. Summary

In this chapter we have introduced three recovery methods. Each embo

dies some of the properties of our ideal system at the expense of discarding

others. Recovery lines are designed to allow independent checkpointing and

transparent recovery. The only requirement is that the recovery system must

17

be made aware of interactions. In general, this can be done without the active

participation of the processes. However, recovery line systems are forced to

give up time-bounded recovery for independent checkpointing. There is no

guarantee that a recovery line will exist, other than the start state of all

processes.

Recoverable transactions give up user transparency and independent

checkpoints in the attempt to provide time-bounded recovery. Often, this con

cession is not. very harmful since, in applications like distributed data bases,

the transaction is a natural unit of work and programs can easily and

efficiently be composed of recoverable transactions.

Finally, shadow processes offer independent process recovery and time

bounded recovery. In return for this, programmer transparency is lost. Com

munication protocols must be designed and written for the primary to keep

the shadow consistent with it.

18

CHAPTER 3

A Solution - Published Communications

In the last chapter we reviewed three classes of recovery systems, each of

which failed to satisfy some property or properties of the ideal system. We

now present a method belonging to a third class of recovery system, reliable

message systems.

In the case of recovery lines and recoverable transactions, often, a crashed

process cannot be brought to a state consistent with non-failing processes.

Therefore, not only the crashed process but also some non-failing processes

must be restarted to rebuild a consistent state. Shadow processes avoid this

problem by providing an always up to date replacement for the failed process.

The shadow process is consistent with the other non-failing processes so no

backup is required. Unfortunately, keeping the shadow process up to date

requires either complete duplication of the primary or explicit interaction

between primary and shadow.

Reliable message systems are much like shadow process systems. They

assume that a failed process can be replaced in a way that is consistent with

the state of non-failing parts of the system. However, instead of providing an

up to date shadow, they provide a way of independently recovering a failed

process to its immediate pre-failure state. Any message sent to a failed process

in a reliable message system is guaranteed to arrive once the process has

recovered.

This chapter presents a reliable message mechanism called published com

munications, shows how it meets the goals of the ideal system, and explains

how such a system can be designed.

3.1. Published Communications

A published commun_ications system is one in which a reliable recorder

saves, or publ£shes, in stable storage all process checkpoints and all messages

sent to processes. When a process crashes it is recovered by:

1) restarting the process at a previous state, such as its initial state or some

subsequent checkpoint.

2) sending to it all messages that had been sent to the original process and

not read by the process before the checkpoint was taken. These messages

must be resent in the order in which they were received by the original

19

process.

3) ignoring any messages sent by the recovering process that had been sent

by the original process.

As we shall show, publishing is most appropriate in networks using a central

communications medium such as a broadcast medium or ring. In such net

works, messages can be published by a centralized recorder that passively

copies messages transmitted on the network. Such media are important

because they are currently the most popular means of interconnecting proces

sors and other resources to form a distributed system.

3.2. Meeting the goals or the ideal system

This section looks at each goal of the ideal system and shows how that

goal is met by published communications.

3.2.1. Independent process recovery

To restart a process without affecting non-failed processes, we must be

able to recovc ~ the process to the state it had immediately preceding the fault

that resulted in its crash. The process can then resume its normal execution.

Assuming that processes are deterministic upon their input interactions, we

can recreate the state by restarting the process at any checkpoint and recreat

ing any interactions it experienced between the checkpoint and the detection

of the fault. Therefore, an encoding that includes a previous state of the pro

cess and all interactions since then is sufficient for regenerating the pre-crash

state. We can state it as a rule:

Rule 3: A checkpoint for a communicating process taken at time t0 is

valid at time t >t0, if all the interactions of the process between time t0

and time t are also saved.

Comparing this to Rule 2 from Chapter 2, we see that we have eliminated

dependencies between the checkpoints of two different processes. The validity

of a checkpoint now depends only upon the process checkpointed and messages

sent to that process. Using this rule we obtain both independent process

recovery and independent checkpointing, since no process need synchronize

checkpoints with any other.

If we constrain ourselves to message-based systems, then the interactions

are messages and can be easily recorded. This is precisely the publishing sys

tem which we have described above.

In Rule 3, the reader might have assumed that time t was the time of the

failure. Certainly, the above statements are true for that value of t. How

ever, a more interesting t is the time that recovery for the process is

20

completed. The system continues publishing messages after a process crashes.
A process sending messages to a recovering process does not have to wait for

the recovery to complete. It can continue sending messages to the process.
The recorder will save these messages and replay them to the recovering pro

cess when it is ready to receive them. The recovering process will eventually
catch up and be able to accept its messages directly. At that point the
recorder will stop acting as a buffer between it and the rest of the world.

3.2.2. Transparency of recovery mechanism to programs

For published communications to be invisible to the processes, it is neces
sary that the steps outlined above be performed without the process's
knowledge. In message-based systems, processes send and receive messages via
calls to the operating system kernel. If we perform all the publishing actions
in or below the system kernel, then the actions will be transparent to the pro

cess.

3.2.3. Arbitrarily bounded recovery time

The real time necessary to restart a process depends on the time needed
to perform the following three steps:

• loading the process with the checkpoint state

• replaying the published messages to the process

• allowing the process to execute from its checkpoint state to its pre-crash

state.

In general, the three steps will be occurring in parallel. However, for the sake
of finding an upper bound for recovery, we will assume that the three steps are
serially executed. Therefore, the recovery time will be bounded by the sum of

the times necessary to perform each of these steps or:

l max=lreload+lreplay +lcompute

These times are all elapsed real time. Each of these times can be expressed as

a function of load dependent parameters in the following ways:

• treload has two main components, a fixed time necessary to build system

table entries for the process, tcfiz, and a variable part which is the length

of the checkpoint in pages, [check' times the time to load a page of the

checkpoint, tpage·

• treplay is the sum of the time needed to lookup and replay each message.

A message's hokup and replay time is also made up two parts. The first

is a fixed time per message, tmfix' for looking up the message and initiat

ing the transfer. The second is the time to transmit the message: the

21

length of the message in bytes, lm,g, times the time to transmit a byte of

the message, tbyte·

• tcompute is a the real time needed by the process to recompute its precrash

state from the checkpoint state. It is the process's execution time since

the last checkpoint, t,ince• divided by the fraction of the CPU it can

obtain during recovery, /cpu·

Thus, at time T, a process that was checkpointed at time To. and that has

received nr messages at time Twill have a maximum recovery time of

lmax = lcfi% + lpage I check

+ lmfi% (n r-n rJ
nr

+ lbyte. E lm,g;
t=n'll+l

1 + (T-To) -r
J cpu

The values of the load dependent parameters (tcfi:z, tpage• lmfix• tbyte• and

f cpu) can all be be determined empirically by measuring the system under

various loads and with varying numbers of simultaneously recovermg

processes.
nr

The process specific values (/check• lmfi:z(nr-nr0), • E lm,g;• and T-To)
t=n'll+l

can be accumulated each time a process is checkpointed or receives a message.

\Vith all these values in hand, the system can dynamically determine t max

for each process. Each time a process receives a message or expends its time

slice, the operating system can calculate its new process dependent parameters.

It can then use these and the load dependent ones, corresponding to the

current load, to determine the process's t max· If the system checkpoints a pro

cess when ever its t max exceeds its specified recovery time, the process can

always be recovered in that amount of time.

0

128 byte

t reload

200

eheekpolnt

t reload

+ tcompute

t reload

+ tcompute

+ t replay

Figure 3.1: Calculating recovery times

time (m•)

As a simple example, consider the process with the history shown in Fig-

ure 3.1. Let us assume a constant load on the system with

tcfi:z = lOOms

tmfi:z = 2ms

tpage = !Oms /page

tbyte = 0.01 ms /byte

/cpu= 0.5

Immediately following the checkpoint, the recovery time is just the time to

reload the checkpoint or

t max = lreload

= lcfi:z + tpage /check

= 100ms+4pages *lOmsfpage
= 140ms

At time 200 ms, the recovery time depends both on the reload time and the

time it takes to redo 100 ms of work (lOOms~) or
J cpu

1 = treload + t,ince -r-
J cpu

= 140ms + lOOms
.5

= 340ms

23

Finally, immediately following the message, the recovery time is dependent on
reload time, execution time, and the time to replay the message or

t max = treload + tcompute + treplay

= treload + tcompute + tmfiz + lm,g tbyte

= 140ms + 200ms + 2ms + 128bytes *.Olmsfbyte
= 343.28ms

3.2.4. Low cost

In published communications, there are two steady state functions: the
generation of checkpoints and the publishing of messages. Checkpoints are
generated by the processing nodes. The effect on performance should not be
more or less than other systems that use checkpointing. However, since pub
lishing allows independent checkpoints, we are free to provide checkpoint
intervals on a per process basis.

A first order approximation to an optimum per process checkpoint inter
val was determined by John Young(Y oung 7 4]. Young's model contains three
parameters: the compute time between checkpoints (Tc), the time needed to

save a checkpoint (T,), and the mean time between failure (T1). Young

defines the cost of checkpointing (t1) to be the sum of the time spent check

pointing between failures and the time lost to recomputing following a failure.
Assuming that failures arrive exponentially, Young found that, as a first order

approximation, t1 can be minimized by choosing T1 = J 2T, ~.
The key to keeping the publishing overhead low is the centralization of

the publishing process. On many local area networks (LAl~s), not only may
any node overhear the messages destined for another node, but it may do so
passively, that is, without the knowledge of the communicating parties. Such
networks include Ethernet[Metcalfe and Boggs 76], rings[Farber et al 73, Wolf
and Liu 78], and Datakit[Fraser 79]. Using this property, we can perform all
publishing using a special purpose processor attached to the network. Since
this processor performs its function passively, it should not affect the perfor
mance of the system in any significant way. This assumes that the recorder
can record messages as fast as the processes can inject them onto the network.
Chapter 5 presents a queuing simulation that indicates that this is indeed

24

possible. We also assume that some spare capacity is left both in the recorder

and in the network to handle recovery of processes.

3.3. Published Communications

A published communications system is one that incorporates the features

of the previous section: centralized message publishing and independent

recovery by message play back. In this section, we present the elements neces

sary in a published communications system. Chapter 4 will show how these

elements have been added to an existing system, DEMOS/MP.

Figure 3.2 shows published communications system in normal operation.

processing node 1

All messages are received
both by the intended
receiver and the recorder.

LOCAL NETWORK

processing node n

special

recording node

Figure 3.2: Publishing System Before Failure

A recording node is attached to the network via a special interface. The node

is in charge of recording all messages on the network and of initiating and

directing all recovery operations.

The main functions of a published communications system are:

• Storing messages and checkpoints

• Detecting crashes

• Recovering processes

25

• Recovering from recorder crashes

In the rest of this section, we examine how the system performs each of these.

3.3.1. Storing Messages and Checkpoints

The first checkpoint for a process is the binary image from which the pro

cess is created. When a new process is created, the recorder is told the initial

state of the process, usually the name of this binary image and any other

parameters associated with the process creation. If a crash occurs before the

process is checkpointed, this binary file is used to restart the process.

Messages seen by the recorder are stored in the order in which they would

be received by the destination process. These messages constitute a message

stream that will be transmitted to the process if it is restarted. In addition,

the recorder keeps track of the highest numbered message that a process has

sent. This will determine when messages generated by a recovering process

should be transmitted to their destinations.

At any time, the recorder will accept a checkpoint for a process. After

the checkpoint has been reliably stored, older checkpoints and messages can be

discarded. Frequent checkpointing decreases the amount of storage required

and the time to recover a process, but increases the execution and network

cost. A suboptimum choice of checkpointing frequency will yield less than

optimum performance, but it will not affect the recoverability of a process or

the system.

3.3.2. Detecting Crashes

The crash detection system has two distinct functions; the detection of a

process crash and the detection of a processor crash. The latter is treated as

the crash of all processes on the processor.

Single process crashes are caused by sporadic processor errors. Such

errors cause traps to the operating system kernel, which stops the process and

sends a message to the recovery manager containing the error type and process

id of the crashed process.

Processor crashes are detected via a timeout protocol. For each processor

in the system, the recovery manager starts a watchdog process on the record

ing node. The watchdog process watches for messages from the machine being

watched. If no messages have been seen in a while, the processor is considered

to have crashed and is restarted. or course, it is a good idea for each proces

sor to send a message from time to time, even if it has nothing to say, to avoid

appearing to have crashed.

26

Faults occurrmg within the kernel are handled as crashes of the whole

processor.

3.3.3. Recovering processes

The system in recovery mode looks as in Figure 3.3.

processing node 1

Process B it rettarted at itt

last checkpoint. A recovef11

proceu resend1 it all it1

published menages. All menages

resent by proceu Bare di1carded.

processing node n

special

recording node

Figure 3.3: Recovering a Process

The main element is the recovery manager, which resides on the recovery node

and is in charge of all recovery operations. It maintains a database of all

known processes, their locations, and checkpoint information.

When the recovery manager receives notification of a crash, it starts up a

recovery process for each crashed process. The recovery process then performs

the following steps:

(1) Picks a node for the process to restart on. Unless the processor has failed,

this will be the same node that the process used to be on. If the processor

has failed, it would be best to have one or more spare processors on the

network that could assume the identities of failed processors. Otherwise,

in addition to recovering processes for a failed processor, it will be neces

sary to migrate them to other nodes.

27

(2) Sends a message to the node's kernel telling it to start up a process with

the specified process id and set it in the recovering state. Transmit the

information from the latest checkpoint to allow the kernel to regenerate

the process to the time of that checkpoint. Also, notify the kernel when

to stop ignoring messages from the process. The process can then resume

runnmg.

(3) Sends to the recovering process all messages that it had received between

the time of its last checkpoint and the subsequent crash.

It is up to the kernel on the new processor to ignore all messages sent by

the recovering process until the process sends a message it had not sent before

the crash. Messages arriving from processes other than the recovery process

are discarded until the last recovery message is sent.

As stated above, it is possible that a process will have to be recovered on

a different processor. This is essentially process migration combined with

recovery. [Powell and Miller 83] explains in detail a mechanism for migrating

processes from a source processor to a destination processor in a distributed

system. Since the recorder has the requisite process state, it can mimic the

actions of the source processor in order to restart the crashed process on

another node. It is also the duty of the source processor to forward some mes

sages following the actual migration of a process. Since the former location of

the process is not responding to messages, the recorder can forward them itself

without interference.

3.3.4. Recorder recovery

In order to guarantee correct functioning of the system, all message traffic

to processes must be suspended whenever the recorder goes down. Since this

is a major disruption to any system, this should be a much lower probability

event than other parts of the system failing. To insure this, techniques such as

triple modular redundancy (TMR) for the recorder's components and battery

backup for its power supply should be employed. TMR is a technique, origi

nally proposed by Von Neuman[Von Neuman 56]. In TMR, each component

in a system is triplicated. Outputs from the the three parts are passed

through a voting circuit which selects the majority output. Thus any single

component fault is automatically recovered. If no two outputs are the same,

an error condition is flagged. Thus TMR increases both the reliability of a

system and its error detection capability. The battery backup is necessary to

protect against power fluctuations and to power any stable memory that is

implemented using solid state memories. Such memories lose their contents if

power is removed, but can be powered for hours using inexpensive batteries.

28

However, it is still possible for the recorder to fail. When this happens,
three properties must be guaranteed for the correct functioning of the system:

1) no messages or checkpoints can be lost

2) any processes being recovered when the crash occurs must be recovered
subsequent to the restart

3) any processes that crashed while the recorder was down will be recovered

The first property is provided by requiring a positive acknowledgement
from the recorder for each message. The acknowledgement is given only after
the message has been reliably stored. The message cannot be used by the
receiver until this acknowledgement is received. In Chapter 6, we explain how
this can be done without serious performance degradation of the system in

many local area networks.

The second and third properties are provided by the recorder's restart
actions. \Vhen the recorder restarts, it first reads the checkpoint and message
information on its stable storage to determine which processes should exist. It
then sends queries to all processors requesting the state of these processes.

Upon receiving responses from these processors it then takes the following
actions depending on the reported state of the process:

• the process is functioning - Nothing has happened so no action is
taken.

• the process has crashed - This would occur if the process had crashed
immediately prior to or while the recorder was down. Recovery is started
for the process.

• the process is being recovered - The recorder had started to recover
the process before crashing. The process is destroyed and recovery is res

tarted.

• the process is unknown- This might occur if the processor the process
was on crashed while the recorder was down. Recovery is started for the
process.

If any processor doesn't answer, the fact will eventually be detected by the
crash detection system and recovery of processes on that processor will
proceed in the usual way.

3.4. Recursive crash or the recorder

A recursive crash is a crash that occurs while the recovery is in progress.
The only difference between a recursive crash of the recorder and its original
crash concerns the process state requests sent by the recorder during restart.
After the recursive restart, responses for old state requests may be received.

29

In order to ignore these out of date responses, we need to uniquely identify the
responses belonging to any particular restart. This can be done by providing,
in stable storage, a counter that is incremented each time a restart begins. All
state request and response messages must contain that restart number. All
state responses containing different numbers are ignored.

3.5. Recursive crash of a process

The recorder's kernel contains a table of all recovering processes and the
recovery processes assigned to them. Whenever a recovering process crashes,

the recorder's kernel is notified of it by the crash detection system. It then

terminates the recovery process, terminates the recovering process, and creates
a new recovery process to reinitiate recovery. It is assumed that when the
process is terminated, all messages queued for it are also discarded.

3.6. Limitations

Any recovery system can only recover from detected errors. Therefore,
the effectiveness of published communications depends on the fault detection

capabilities of the underlying system.

With a single recorder, network partitioning can not be handled. If the
network splits, the part with the recorder will attempt to restart on its part of
the network all processes that were running on the now inaccessible part of
the network. Should the network once again join, chaos would result.

With multiple recorders, a network partition may be recovered from. To
do this, we must ensure that a recorder exists on each part of the network that

is likely to become a partition. For example, a network made up of a number
of Ethernets connected by transceivers must have a recorder on each of the
separate Ethernets. It is the responsibility of each recorder to record messages
for, and recover from crashes of, only processes on its part of the network.

Should the network partition, no duplicate processes will be created.
Processes communicating with processes on other partitions will just wait until

the network is once again joined. Other processes will continue as if nothing

happened.

3.7. Related systems

Publishing provides a system with reliable message delivery: it guarantees

that all messages will eventually be delivered despite crashes of either sender
or receiver. A number of other systems currently support reliable messages,
including the Reliable Network[Hammer and Shipman 80], Tandem's Non
Stop system[Bartlett 81], the Auregen Computer System[Borg et al 83], and
Fred Schneider's broadcast synchronization protocols[Schneider 83]. Although
each of these systems has some similarity to publishing, they all differ from it

30

in one significant way: their mechanisms are all distributed. In all these sys

tems, the application processors must expend resources, both CPU and

memory, to save the redundant information that will be used in the event of

crash recovery. Publishing, by passively listening to the network, allows this

work to be centralized in one recorder processor.

To build such a recorder, we assume the ability to listen to all messages

on a broadcast network. Much precedent exists for this technique. For at

least one network, the Ethernet, a number of such listeners exist. In

METRIC[McDaniel 77J, a passive recorder was attached to the Ether to record

performance information generated by programs on the network. [Shoch and

Hupp 79] mentions a "passive listener set to receive every packet on the net."

[\Vilkinson 81] used a passive Ethernet listener to resolve concurrency conflicts

for a data base system, and suggested using this listener to record recovery

information in the same fashion as publishing.

The reader should also note the similarity between published communica

tions and the system proposed by Russell, described in Chapter 2. Published

communications can be seen as an extension of his ideas under the assumptions

of deterministic processes and centralized communications media.

31

CHAPTER 4

An Implementation

An initial implementation of published communications has been added to
DEMOS/"MP, a multiprocessor version of the DEMOS system originally

created for the CRAY-l[Baskett et al 77,Powell 77]. This version was built to
demonstrate how published communications can be easily added to an existing
message-based system. The implementation includes the publishing of mes
sages and the recovery of processes from their initial state and the published
messages. Because of time and resource constraints we have not yet imple

mented process checkpointing and recorder node recovery, nor have we

attempted any kind of T.MR to make our recorder more reliable.

4.1. Experimental Environment

DEMOS/"MP runs on a number of loosely connected Z8000-based nodes,
connected via point to point low speed links (approximately 50,000 bits per
second). The Z8000 is a sixteen-bit microprocessor made by Zilog(Zilog 80].

DEMOS/"MP also runs under VAX UNIX[Ritchie and Thompson 78], where we
have created a simulated multiprocessor environment. Generally, all software
except low level device drivers is developed and debugged on the VAX system.
The software can then be moved without change to the Z8000 systems.

For publishing, we have converted one of the nodes into a recorder for
messages. This recorder must be able to reliably receive any messages seen by

other nodes in the network. Since we have no reliable broadcast network or
passive network listeners, we simulate them. On the Z8000s, we accomplish

this by making the recording node the hub of a star configuration (Figure
4.la). Any messages received incorrectly by the recorder are not passed on.

In the version running under VAX UNIX, an Acknowledging Ethernet(Tokoro
and Tamaru 77] is simulated using a low level protocol on top of the datagram
sockets provided by Berkeley's 4.2 UNIX implementation (Figure 4.lb). The
Acknowledging Ethernet is described in Chapter 6.

\Ve start this chapter by presenting the basics of the DEMOS operating

system and the functions added by DEMOS/MP. 'N e then show how publish

ing is added to this system.

Z8000

DEMOS/MP

,_R
DEMOS \.

Z8000

DEMOS/MP

(a) the ZSOOO version

recorder

simulated

acknowledging ethernet

ill'·HX IPC

(b) the VAX UNIX version

Z8000

DEMOS/MP

DEMOS

Figure 4.1: Experimental Configurations

4.2. DEMOS

32

Our system sterns from the original DEMOS system developed for the

CRAY-1. DEMOS/MP preserves the organization, interprocess communica

tions, and process structure of DEMOS. Therefore, we begin with a descrip

tion of these aspects of DEMOS.

4.2.1. Organization

DEMOS is made up of cooperating processes and a message kernel (Fig

ure 4.2). The message kernel provides all communications between processes.

It executes as privileged code and resides in the kernel address space. User

level processes access the message kernel via kernel calls.

33

(k.en><:l c:all) process space

kernel space

Message Kernel

(IUbrouSine call)

kernel process

Figure 4.2: DEMOS Kernel Organization

The kernel process also resides in the kernel space. It provides a standard

interface for the network, disk control, real time clock, and process control.

Thus, it provides an abstraction that masks the particular personality of the

underlying hardware. User level processes make requests of the kernel process

by sending it messages. The kernel process consists of an infinite loop that

alternately processes these request messages, polls and handles interrupts, and

schedules non-kernel processes to run.

System processes are user level processes that are an integral part of the

operating system. While the kernel provides primitive functionality, the sys

tem processes provide structure and policy. The file system, job control sys

tem, interval timer, and command interpreter are all system processes. Sys

tem processes are distinguished from application (user supplied) processes only

by the way they are created. The system processes are created by the kernel

process when the operating system starts up.

4.2.2. DEMOS interprocess communications

DEMOS interprocess communications is based on messages. Three

objects are important to communications: links, channels, and messages.

4.2.2.1. Links

In any message system, processes have to be able to name each other in

order to send and receive messages. In· DEMOS, this "name space" is

34

implemented using a special protected object called a link. A link is much like

a capability[Fabry 7 4]. It allows access and is immutable and unforgable. A
DEMOS process must have a link to another process in order to send it mes

sages.

Links exist outside of the address space of the processes, either in mes

sages or in kernel resident link tables. A link can only be accessed in certain
kernel calls, such as link creation, link destruction, and message send. The
process always refers to a link via a link id, which is the link's index into the
link table. Thus, the message kernel controls all access to links.

For a process to receive messages, it must create a link to itself. It can

then pass that link to another process in a message.

It is possible for a process to determine over which link a message to it
has been sent. It does this by assigning a number, called a code, to a link
when the link is created. Any message sent using that link will contain the

code in its header. Whenever a process performs a kernel call to receive a
message, the kernel returns not only the message contents, but also the code
from the messag~ header.

The code allows links to be used as pointers to resources. For example,

when the file system opens a file it returns to the client process a link whose
code identifies the file. The client then requests reads and writes by sending
messages over the link. Using the code returned with the request messages,
the file system can tell which file is being read or written.

When a process is created, the creating process may insert a number of

initial links into the new process's link table. This solves the rendezvous prob
lem for processes. When the kernel starts the system processes, it starts them
all with one link, a link to a named-link server. A system process can then
send messages to the server containing a link and a name for the link.

Another system process can then obtain the named-link from the server by
sending the server a request containing the name of the link desired.

4.2.2.2. Channels

The DEMOS message kernel maintains a queue of input messages for each
process. \Vhenever a message is sent to a process, it is appended to the end of
the queue. Normally, a process will read the messages in its queue in the same
order in which they arrive. However, some messages may be more urgent than

others. A process may wish to read those messages before others which are
ahead of them in the queue. In DEMOS, this is done using channels.

\Vhen a process creates a link, it specifies the channel which the link
belongs to. Any message sent over the link will contain the link's channel
number in its header. \Vhenever a process performs a receive kernel call, it

35

specifies the channels from which it is willing to receive a message. Instead of
returning the next message in the queue, the message kernel returns the next

message in the queue which belongs to one of those channels. Thus, the pro
cess can receive messages selectively.

4.2.2.3. Messages

Messages consist of three parts: a header, a passed link, and a body. The
header contains the code and channel of the message in addition to informa

tion needed to route the message to the correct process. These fields are

obtained from the link over which the message is sent.

A message can include one link by specifying its link id when sending the
message. The link is removed from the sender's link table and copied into the

message. When the message is read the link is moved into the receiver's link
table. The receiver is told the link id of the link.

The body of the message is not interpreted by the kernel. It has a max
imum size specified by the implementation. It is left to the communicating
processes to agree as to the contents and format of a message.

4.2.3. Process control

The process control system of DEMOS consists of three processes: the ker
nel process, the memory scheduler, and the process manager. The reason for
this three way split is modularity. Each process provides a separate address
space in which to perform a particular function.

The three processes are connected serially. The process manager has a
link to the memory scheduler and the memory scheduler has a link to the ker
nel process. All user level process control requests are made to the process
manager. The request is then passed through the three processes, each per
forming its particular function. Eventually a reply is passed back up to the

requester.

The process manager maintains all information about process groups,

called jobs. Each time a user logs in, he starts a new job. All processes
created by his login session are part of the same job. A job has associated
with it certain limits to control the amount of resources used by a user.

The memory scheduler handles problems associated with swapped
processes. Many kernel operations in process control abort if the process is

swapped out. The memory manager makes sure the operations are success
fully completed once the process is returned to memory.

The kernel process is the lowest level of the process control system. Its
provides the primitives needed by the other two levels to create, change, and

36

destroy the kernel resident state of a process.

4.3. Distributing DEMOS

The original DEMOS supports the distribution of computation across

processes via messages. The operating system is itself a prime example.

Extending this to include distribution of processes across processors turned out

to be a simple matter. The additions needed were:

1) network wide process names

2) remote process creation

3) remote message routing

In DEMOS/MP all of these have been added in a manner that is transparent

to the processes. Each processor has its own message kernel and kernel pro

cess. A kernel process on a processor controls only the processes on that pro

cessor. Processor assignment for system and applications processes can be

arbitrary, from a functional standpoint, since the placement is transparent to

the processes. However, the performance of the system may be sensitive to

where processes are placed. In the current implementation, placement of sys

tem processes is up to the system administrator and placement of applications

processes is dependent on an easily changed policy algorithm in the job con

troller.

The rest of this section describes how the three distribution problems,

listed above, are solved.

4.3.1. Network wide process names

Associated with each process, in single processor DEMOS, is a unique

identifier. In DEMOS/MP, this identifier is made unique, network wide, by

appending to the single processor ID the unique ID of the processor on which it

was created. Processes maintain this identifier, even if they should

migrate[Powell and Miller 83].

Due to the nature of links, this change in process identifier is completely

transparent to processes. As explained above, a process names another process

only via links (There are two exceptions to this rule, the job controller and

memory scheduler. These exceptions will be addressed in detail later in the

thesis). Since the process identifiers exist within the links, the processes do not

have to be changed to support the new name space.

4.3.2. Remote process creation

Process creation remains much the same as in DEMOS. The difference

lies in the memory scheduler. Instead of a link to just one kernel process, the

37

memory scheduler maintains a link to the kernel process of each node, allow

ing it to create processes on all nodes.

\Vhen a user level process requests a process creation it may supply an

optional parameter specifying on which machine to create the process. If the

parameter is not present, the memory scheduler chooses the node from which

the request came.

4.3.3. Remote message routing

A network interface was added to the message kernel in DEMOSf!vfP. If

neither sender nor receiver crashes and network failures are temporary, the

network guarantees that:

• messages are not duplicated

• all messages sent arrive at the receiver's processor

• all messages from one process to another arrive m the same order in

which they were sent

The rest of this section describes the details of the network that ensures these

properties.

The layering of the system is same the same as many contemporary net

works such as the XEROX's internet protocols[XEROX 81] and the DARPA

TCP /IP protocol[DARPA 82a, DARPA 82b]. Figure 4.3 shows the organiza

tion of the network interface. The organization is strictly hierarchical with

one exception, the interrupt servicing. The kernel process polls for interrupts

from all devices. Rather than filter interrupts through a number of layers, the

kernel directly interfaces to the lowest layer in addition to the highest.

Mesaap Kernel

send meuage on link

receive meBBage on channel

Transport Layer

send guaranteed meBBage

send unguaranteed meuage

receive meuage

Link Layer

11end network meuage

get network mes11age

Media Layer

read block from device

write block to device

test for interrupts

Figure 4.3: Network Interface Organization

38

The lowest layer in the network is the media layer. The media layer

creates an abstract network device for the rest of the system. The abstract

device can be read from, written to, or have its interrupt status polled. To do

this, the media layer often has to provide interrupt time services such as

buffering of input messages. The media layer is the only layer that differs in

the VAX and ZSOOO implementations.

The next layer is the link layer. It is responsible for assuring that only

error-free messages are transmitted to upper layers. It does this by wrapping

all messages with a rotating checksum and by checking the message type for

validity. Any messages with an incorrect checksum are discarded.

The most complex part of the network is the transport layer. The tran

sport layer provides:

• unguaranteed, high priority messages

• guaranteed messages

• duplicate message suppression

39

• route through

• network time

The transport layer provides two types of messages, unguaranteed and

guaranteed. The idea of supporting both guaranteed and unguaranteed mes

sages was pioneered at XEROX PARC in their internet protocols. Other net

works, such as that provided by Berkeley's 4.2 UT"--lX implementation[UCB 82],

have since adopted the idea.

Unguaranteed messages exist for the kernel process when sending dated or

statistical information such as routing information. Such messages have no

need for guarantees since they are sent periodically and since they would often

be out of 9,ate if retransmission were necessary.

Guaranteed messages can also be sent. They are guaranteed using an

end-to-end acknowledgement protocol. By end-to-end, we mean the processor

from which the message originates expects an acknowledgement from the pro

cessor on which the destination process resides. Until this acknowledgement is

received, the originating processor periodically resends the message. End-to

end acknowledgement is popular in networks, such as most local area net

works, where messages do not have to be forwarded through many processors

before reaching a destination.

Message resends are a potential source of duplicate messages. To avoid

them, each message is given a unique identifier (The identifier is made up of

two fields: the unique identifier of the sending process and a number from that

process's state block. This number is increased every time a message is sent

by that process). Each processor keeps a cache of identifiers of recently

received messages. If the identifier of a received message is found in this

cache, then the message is discarded as a duplicate. The size of the cache is

adjusted to make the lifetime of a message in the cache many times greater

than the time for a message to follow the longest path through the network.

Message ordering between processors is currently preserved by allowing

only one unacknowledged message to be in transit from each processor. The

processor will send no other messages until the current one is acknowledged.

(This scheme is inefficient when message traffic is high. It will be replaced in

the future by a windowing scheme that will continue to preserve message ord

ering.) The message kernel itself guarantees that messages for a process within

a processor will not "pass" each other. Therefore, message ordering is

guaranteed across the network.

4.4. Making DEMOS/MP compatible with published communica

tions

,

40

In Chapter three, we showed how processes could be recovered in a mes

sage based system. In our model, a recorder attached to the network records

all messages to processes. A process can be recovered by restarting it at a pre

vious checkpoint and replaying messages to it. The validity of our model

hinges upon three properties of the system:

1) all messages must be published before being queued to the processes for

which they are intended

2) processes receive messages in the same order in which they are seen by

the recorder

3) processes interact only via messages

Although DE:MOS/~1P is a message based system, the system had to be

examined and changed to guarantee the above properties. This section

describes those changes.

4.4.1. Publishing messages before they are used

A recorder was added to the system by converting one of our

DEMOS/.MP nodes into a recorder. To make that node see all messages, w2

have modified the message kernel in DEMOS/~1P to send all messages, includ

ing intranode messages, on the network before routing them to the intended

process. By sending all messages on the network, we can guarantee to record

all messages.

The recorder has the ability to receive all transmissions on the network.

If it incorrectly receives a message or message acknowledgement, the recorder

can block the transmission, ensuring that no other processor correctly receives

it.

As we explained earlier, the network has three kinds of messages:

unguaranteed messages, guaranteed messages, and acknowledgements for

guaranteed messages. If a guaranteed message is blocked, it will eventually be

resent by the transport layer. The blocking and resending continues until the

recorder successfully records the message. The interference causes no malfunc

tion in the case of the other message types. If an unguaranteed message is

blocked, there is no problem. It after all was not guaranteed. If an ack

nowledgement is blocked, the message it acknowledges will eventually be

resent. Once the duplicate message is received, it will be acknowledged again.

Duplicate message suppression keeps the second copy of the message from

being passed on to the process.

It is possible to discover the order in which messages are received at the

receiving node by tracing the acknowledgements sent in response to messages.

41

4.4.2. Message ordering at the recorder matches that at the pro

cess

The published communications system described in Chapter 3 assumed

that messages overheard over the network would be in the same order as they

are received by the intended process. Thus, the recorder could tell, just by

listening to messages and acknowledgements, in what order the process

recetves messages.

\Vith channels, this is no longer necessarily the case. Channels allow mes

sages to be received in an order different than that in which they are placed in

the process's queue. The only way for the recorder to know in what order

messages are received is to be actively informed of the order of reception. In

DEMOSjrv1P, we do this by sending a message to the recorder whenever the

use of channels causes messages to be read out of order. The message contains

the id of the message read and the id of the first message in the queue, that is,

the message that would have been read had channels not existed. Using this

information, the recorder can determine the order in which messages have

been read.

When a process is recovering, it must read messages in the same order as

before the crash. The recorder replays messages to the recovering process in

the order in which they were originally received. Whenever a recovering pro

cess performs a receive message, the channels specified must agree with the

next message being replayed. If they do not, the receive message call returns

with a code specifying no messages in the queue.

4.4.3. Processes interact only via messages

Our next problem was to ensure that all process interactions were only

via messages. To this end, we had to determine what makes up the complete

state of a process, and exactly what actions can be initiated by a process. We

then examined each of these actions to see if they could affect the process state

of another process.

A process's state consists of:

• process address space - This is the part of the process containing the pro

gram, its data, and its stack.

• process control record - This contains the run state of the process, various

scheduling parameters, and the head of the queue of waiting messages.

This information is resident in the kernel address space.

• process save area - This is the area in which variable length tables for the

process are kept, such as paging information, the link table, and context

switch information. This information is also resident in the kernel

42

address space.

The actions available to a process are:

1) execution of instructions belonging to the process's program.

2) calls to the message kernel

3) request messages to the kernel process for process control

Program execution was the easiest to examine and rule out as a possible

problem. Execution of program instructions can change only the address space

of that process. This is a direct result of the memory mapping hardware.

DEMOS provides 16 kernel calls for processes. When a process makes a

kernel call, it traps to the message kernel. Since the message kernel has the

ability to change any process's kernel resident state, this was a potential prob

lem area. On examining the kernel calls we found that 5 operate upon links

owned by the calling process, 10 cause message reception or transmission, and

1 causes the calling process to stop. All these calls, by virtue of returning a

condition code to the calling process, change the caller's address space. How

ever, never do these calls affect the state of a process other than the calling

one except by adding messages to the other process's message queue.

Finally, we looked at the possible requests to the kernel process. As we

have shown earlier, the kernel process is a special process resident in the

kernel's address space. It is the part of the system that creates new processes,

and can therefore, change the parts of the process state that it creates: the

process control record and the process save area. This, in itself, would not be

a problem since we have already conceded the need to inform the recorder of

process creation. However, requests exist to allow the kernel process to change

a process's run state, and to move links from one process's state to another's.

Although the request is made to the kernel task via a message, the effect of the

request is a shared memory interaction between the kernel task and the con

trolled process. This interaction is invisible to the recovery system and cannot

be correctly recovered.

The simplest way to demonstrate the problem is to give an example of a

kernel process request and show how it will lead to complications during

recovery. Figure 4.4 shows the actions normally taken in a MOVELL'\JK

request. A MOVELINK request to the kernel process causes it to move a link

from one process's state to another's. This is normally done immediately fol

lowing process creation to allow a new task to talk to other tasks. Process A

starts by creating the link. It then sends a message to the process control sys

tem to move the link to process B. The request eventually filters down to the

kernel process which actually moves the link from one link table to another.

43

Proeeu A Kernel Proeeu

create a link

request MOVELINK

receive request

move link from

A's state to B's

send response

receive response

create another link

Figure 4.4: Actions taken by MOVELINK

Now consider what happens when the system crashes. Processes A and B

and the kernel process are restarted and are resent their published messages.

If process A recovers to a point after the create link call before the kernel pro

cess is replayed the MOVELI!'H(request, the request will function correctly.

However, if the kernel process recovers faster than process A, it may process

the MOVELINK request before the link has ever been created.

This problem is circumvented by making process control yet another mes

sage stream to the process. The problem can then be handled in the same way

as the channel problem. Only creation requests are sent directly to the kernel

process. All other requests (move link, migrate process, stop process) are sent

to the process itself. These are intercepted by the kernel process. The kernel

process then temporarily assumes the identity of the controlled process while it

performs the control functions.

44

This is done usmg a kind of link called a DELIVERTOKERI\TEL link.

After creating a new process the kernel returns to the requester a DELNER

TOKERNEL link that points to the created process. All subsequent process

control requests for that process must come over that link. When the message

kernel receives a message sent via a DELNERTOKERNEL link, it passes the

message, not to the process to which it is addressed, but to the kernel process

residing on its node.

While performing process control operations, the kernel may start up

conversations with other processes. Whenever it does, any messages it sends

are attributed to the controlled process. Also, any reply links, which it passes

to other processes, are DELIVERTOKERE~~L links pointing to the con

trolled process.

When recovering a process, process control messages are replayed just like

all other messages. Their ordering is preserved with respect to all other mes

sages to a process.

Figure 4.5 shows the actions involved in the MOVELINK call after the

above changes. Process A starts the exchange by sending a DELNERTOK

ERI\"'EL request to process B. The kernel process, running as process B, then

sends a DELNERTOKERNEL request back to process A requesting the link.

The kernel process, running as process A, then sends a DELNERTOKERNEL

message back to process B containing the link to move. Finally the kernel

process, now running as process B, stores the link in process B's link table.

Proeeu A

create a link

request MOVELINK

Kernel Proeeu

receive request

request link Crom A

•
receive request

send link to B

receive link

send response to A

Proeeu B

Figure 4.5: Actions taken by the new MOVELINK

4.5. Publishing messages

45

Our system consists of a number of DEMOS/MP processors, one of which
is a recorder. Each runs a modified version of the message kernel. The mes
sage kernel for processing nodes has been modified so that all messages, even

intranode, are broadcast on the network. A message must be received from
the network before it can be delivered to a process. The message kernel on

the recorder has been modified to pass all guaranteed messages and ack
nowledgements to the recording software. The messages are recorded for play
back during recovery. The acknowledgements are recorded so that the
recorder can determine the order messages are received in at the processing
nodes. As we explained earlier, all messages not received by the recorder are
aborted by the recorder so that no other node can receive them.

The recorder stores all messages on disk after a small amount of process
ing. The processing is performed to maintain a data base of running processes.
Each entry in the data base contains the following information:

46

• the process identifier

• the identifier of the most recent message sent by the process

• a list of ids of messages received by the process (since the last checkpoint)

• the file name of the last checkpoint for the process

• the id of the first valid message

• a list of disk pages containing messages to the process

• whether or not the process is recovering

Information about process creation and destruction is provided by the kernel

processes on the processing nodes. They have been modified to send a message

whenever a process is created or destroyed. The recording software recognizes

these messages and uses them to maintain its data base.

As messages are received they are times tamped and buffered. We then

append to the process's data base entry the disk address of the buffer. When

the buffer is full it is written to disk.

Before allocating a buffer to a disk page, the disk page is read in. Any

messages that are no longer valid are removed and the buffer is compacted. It

is then available for buffering new messages.

The process data base is just a summary of the information that appears

on disk. If the recorder crashes, it is possible to rebuild the data base from the

disk.

4.6. Failure detection

Our current version of DEMOSJMP, because of lack of facilities in the

hardware, cannot detect single process failures. Instead, we simulate them in

our V A...:X UNIX version. Processor crashes are detected using a timeout proto

col. When the recording node starts up, its kernel process creates, on the

recording node, a watch process for each processor in the system. Each watch

process is given a link to the kernel process it is supposed to watch. The

watch process periodically sends an "are you alive" request over this link.

The kernel process on the processing nodes has been modified to reply to this

request. If no reply is received in a predetermined interval, the processor

being watched is assumed to have crashed. The watch process then outputs a

query to the operator asking him what response should be taken. There are

currently three:

• do not recover

• recover on the same processor

47

• recover on a spare processor that can assume the process's processor's

identity

We have not yet integrated the ability to recover on a different processor.

Having chosen a course of action, the watch process sends a query to the
kernel process requesting all of its data base entries for processes on that pro

cessor. It then starts up a recovery process for each one, including the kernel

process.

4. 7. Recovering processes

Individual processes are recovered by recovery processes. A number of
changes have been made to the system to allow the recovery processes to
work. The first is a new request recognized by the kernel process of a process
ing node, a request to recreate a process. If the process already exists, it is des
troyed. The recreate request can specify a file to load into the process or it
can indicate that the file is to be loaded from a previous checkpoint that will

follow in subsequent messages. The recreate request also contains two message
ids. The first is the message id to be given to the first message sent by the

recovering process. The second is the id of the last message sent by the pro
cess before it crashed. So that a process will not resend old messages, the mes
sage kernel has been modified to not send any messages with id's less than this

id.

The second major change is to the message kernel of the recording node.
A new system call has been added to allow the recovery process to inject mes
sages into the system without the use of links. When the recovery process is

started, it is given a link to the kernel process of the processor on which

recovery is being performed. It also starts with two links to its own kernel
process. The first link is for messages concerning recovery. The second is to
allow it to read the publishing disk. The recovery process starts by issuing a
recreate request to the other processor. When it receives confirmation, it
reads all the published messages and res ends them to the process using the

special call. It is up to the message kernel on the other processor to make sure
the messages are handed to the recovering process in order and that all mes
sages the recovering processor resends are not passed on. After the recovery
process has sent the last published message, it sends a message to its the
recorder's kernel telling it that the process is now recovered. The recovery

process then terminates.

48

CHAPTER 5

Performance Studies

This chapter presents two performance studies of published communica

tions. The first involves a simulation of the steady state system. Resource

utilization of different parts of the system are studied under varying loads.

The second study measures the DEMOS/:MP implementation. The costs of

publishing on the processing nodes and the recorder are determined.

5.1. A Queuing Model Simulation

In order to get an estimate for resource requirements, we used a queuing

system model to simulate a system. The model was an open queuing model

and was solved using IBM's RESQ2 model solver[Sauer et al 81].

The system modeled was that depicted in Figure 3.2. Its open queuing

model equivalent is depicted in Figure 5.1. The processing nodes are

represented as message sources. Messages are assumed to be delivered when

they are broadcast, so the receiving nodes do not appear in the model. A

return path was included from the recovery node to the network to take care

of acknowledgments from the recording process.

Three types of messages originate at the processing nodes: short messages

(128 bytes long), long messages (1024 bytes), and checkpointing messages (1024

bytes). The checkpoint traffic was generated under the assumption that a pro

cess is checkpointed whenever its published message storage exceeds its check

point size. This policy tries to balance the cost of doing a checkpoint for a

process against the disk space required for published message storage. The

results were checkpoint intervals between 1 second for 4k byte processes dur

ing high message rates and 2 minutes for 64k byte processes during low mes

sage rates.

49

D--"""""' ---+CJ --sink

--- o-.......
- pa&h for adnowlecl&os from ~

Figure 5.1: The Open Queuing Model

Figure 5.2 shows the values of hardware parameters chosen from our com

puting environment at Berkeley, which consists of DEC V ~X 11/780's con

nected via a 10 megabit Ethernet.

parameter value

Ethernet interface 1.6 ms
interpacket delay

Network bandwidth 10 megabits
per second

Disk latency 3 ms

Disk transfer rate 2 megabytes
per second

Time to process 0.8 ms
a packet

Figure 5.2: Hardware Parameters for the Queuing Model

The operating points for the model were determined by three load param

eters:

50

1) load average- the number of processes per processor.

2) state sizes - the sizes of the changeable state of a process.

3) message traffic- the amount of network communication.

These parameters were estimated by measuring the most heavily utilized

research VAX at UCB over the period of a week. The load average and state

sizes were directly measurable. Figure 5.3 shows the distribution of state sizes.

%
processes

30

20

10

0 8 16 24 32 40 48
memory

(k bytes)

Figure 5.3: State Sizes for UNIX Processes

The message traffic was not measurable~ however, since no distributed

system existed at UCB at the time. Instead, the following method was used to

convert measurements of the single processor into a distributed equivalent. All

system calls were assumed to translate to short messages sent to servers. All

1/0 requests were assumed to represent long messages sent to devices or other

processes. The sizes of these messages were estimated to be 128 and 1024

bytes respectively. This conversion is consistent with what we would expect to

see if we were running DEMOS instead of UNIX.

Using these measurements, four operating points were established, one

representing the mean of each parameter and the other three representing the

measurements when each of the parameters was maximized. Figure 5.4 shows

the parameter values for those operating points.

51

description of load disk system
operating point average access calls

mrunmum 23 19/sec 106/sec
load average

maximum disk 6 43/sec 111/sec
access rate

maximum system 6 5/sec 860/sec
call rate

mean value for 7 13/sec 118/sec
all parameters

Figure 5.4: Operating Points for the Queuing Model

The system was simulated for 1 to 5 processing nodes and 1 to 3 disks at

the publishing node. Figure 5.5 shows plots of the utilization of the publishing

node processor, its disk system and its network interface.

The system stayed within physical limits with two exceptions. The first

was the saturation of the disk system used with the maximum long message

rate. This saturation was removed by allowing messages to be written out in

4k byte buffers rather than forcing one disk write per message. The second

problem occurred at the high system call rate operating point. If this rate per

sists for more than a few seconds, all three subsystems saturate when more

than 3 processing nodes are attached to the system. This saturation cannot be

removed by any simple optimizations; luckily, this operating point was not a

long-lived phenomenon in the system measured. Therefore saturation at this

point should offer no significant problems.

52

%utilized

100

80

60

40

20

0
l 2 3 4 5

#NODES

(a) Dlak Utllbatlon

%utilized

53

%utilized

100

80

60

40

20

0

2 3 4 5
*NODES

(e) Network lnterfaee Utilhatlon

Figure 5.5: Percent Utilization of System Components

From this simulation we concluded that the simple system was viable for

at least 5 nodes. We found no cases in which much buffer space was needed in
the recording node (at most 28k bytes). The worst case for checkpoint and
message storage was 2.76 megabytes. However, this was constrained by our

choice of checkpoint intervals. Making less frequent checkpoints increases the
required storage by the amount of extra message traffic in the longer intervals
between checkpoints.

5.2. Measurements of the DEMOS/MP implementation

The implementation, described in Chapter 4, was measured. Since the

DEMOSjrviP system is a research vehicle, it does not support a community of
users or any applications. Because of this, we have not measured the system
under any realistic loads. Instead, we have measured some of the basic system
dependent parameters from which load dependent ones can be inferred. Other
researchers, desiring to use published communications, can then determine the
costs they would incur for their particular systems.

The two basic performance questions for published communications are:

• What does it cost the processing nodes?

• How long does it take to publish a message?

54

The experiments outlined below determine the basic parameters that can be

used to answer these questions under varying loads.

The measurements were obtained from the DEMOS/1vf:P implementation

running under the simulated multiprocessor environment on a VAX 11/750.

All CPU times presented are CPU times for the VAX 11/750. Transmission

times for messages are computed assuming a 10 megabit network.

5.2.1. Processing node costs

Of all the changes made to DEMOS/1vf:P to support publishing, two actu

ally add to the work done by a process node:

1) broadcasting intranode messages on the network

2) advising the recorder of process creation and destruction

The costs of both are determined by direct measurement.

We first determined the effect of sending intranode messages over the net

work medium. In particular, we measured the increase in CPU utilization and

the increase in transmission time. The transmission time is the time elapsed

from the send message call of the sending process to the receive message call of

the destination process. To make the measurements, the program shown in

Figure 5.6, was run on versions of DEMOS/1vf:P with and without publishing.

In each case, the system was otherwise quiescent, that is, it had no other

processes running on it.

--- Get the value of the real time clock
startReal := Get_Real_Time;

-- Get the CPU time, since system start, spent outside the idle loop
startCpu := Get_Run_Time;

-- Send the message 512 times
for i in 1..512 do

SendMessageToSelf;
ReceiveMessage;

od;

- Calculate time for each Send/Receive
realTime := (Get_Real_Time - startReal) / 512;

-- Calculate total CPU time for one Send/Receive
cpuTime := (Get_Run_Time - startCpu) / 512;

Figure 5.6: A program to measure message costs

55

In this program, Get_Real_Time returns the real time. Get_Run_Time

returns the CPU time that the kernel spends outside of the idle loop.

-Figure 5.7 shows the values of realTime and cpuTime for both versions of

DEMOS/MP. (It should be noted that times depend on the network protocol.

However, our protocol is close enough to commercial protocols (XNS, TCP /IP,
DECNET) for the numbers to be meaningful to other systems.)

Times with/without publishing
for in tranode messages

realTime cpu Time
(ms) (ms)

with 51 48

without 23 22

Figure 5.7: Per Message Overheads

In the version without publishing, the 1 ms difference between the CPU time

used by the kernel and the elapsed real time is the time used by the user pro

cess. This difference is 3 ms in the version with publishing since an additional

2 ms are spent in transmitting the message over the network medium. Finally,

the additional 26 ms of CPU time used by the version with publishing is due

entirely to the network protocol and to the servicing of the network device

interrupts. or this time, less than 1 ms is attributable to copying the message

into and out of device buffers. ·

We then ran a similar experiment to determine the increase in CPU cost

during process creation and destruction. This increase is caused by two

things: notification to the recorder of process recreation and destruction, and

the publishing of messages sent between the three parts of the process control

system when creating a process. A null process was created and destroyed 25

times on a system with publishing and one without. The total CPU time of

the system was measured in each case to determine the average increase in

CPU time in the publishing system due to notification of process creation and

destruction. Figure 5.8 shows the results.

56

CPU time with/without publishing
for creation and destruction of

a null process

CPU time
(rns)

with 5135

without 608

Figure 5.8: Per Process Overheads

Once agam, the difference between CPU time used in the two versions 1s

directly attributable to the servicin_g of network protocols.

These two experiments have shown us that most of the cost of publishing

is caused by the use of the general message protocol for publishing intranode

messages. Since intranode messages are transmitted on the network only for

the recorder to see, it may be possible to streamline the protocol for these

transmissions, thereby reducing the cost of publishing intranode messages.

5.2.2. Publishing time for messages

In the queuing simulation, we assumed that the recorder could receive a

message and publish it in 0.8 rns. No attempt was made to meet this limit in

our implementation. However, we measured our implementation to determine

if, with tuning, the could be improved to meet this goal.

As in the previous experiments, we created a process to send a number of

messages to itself. By measuring the total CPU time used by the kernel both

before and after running this process, we determined the average CPU time

taken to process a message. This time was 57 ms per message. After analyz

ing the code involved, we reduced this number to 12 ms by replacing subrou

tine calls by inline routines.

In this experiment, we used a modified DEMOS/"MP kernel as the

software for the recorder. As a result, all messages must go through all layers

of the network protocol before being published. By intercepting and publish

ing the messages directly at the media layer of the protocol, we feel that the

per message cost can be reduced to the desired 0.8 ms or lower.

57

CHAPTER 6

Extensions and Applications

\Ve have presented a model of published communications and a simple

implementation of it. We now show how the model can be extended and used.

6.1. Getting messages to the recorder

We have stated that the recorder must publish all messages on the net

work. If it cannot receive a message, the processor for which the message is

destined cannot be allowed to receive it. One way to achieve this is to use a

transport protocol that ensures it. For example, the processor receiving the

message could be forced to wait for an acknowledge from the recorder before

using the message. Solving the problem at the transport level may actually be

acceptable for many systems. However, special purpose solutions, built into

the network interface devices, can dramatically reduce performance degrada

tion. \Ve describe here solutions for the two most popular types of local area

networks, CSMA/CD (Ethernet like) and token rings[Wolf and Liu 78,Pierce

72, Farmer & Newhall 69].

6.1.1. Ethernets

A solution to the recorder acknowledge can be borrowed from a variant of

standard Ethernet, the Acknowledging Ethernet, designed and studied by

Tokoro and Tamaru[Tokoro and Tamaru 77]. In the standard Ethernet, the

network is available to all nodes for transmission whenever they detect no

transmission on it. If two nodes transmit at the same time (collide), they will

detect the condition, cease transmission, and then retry after pseudo randomly

different intervals.

The Acknowledging Ethernet works much the same way. The difference

is that a time slot is reserved after each message is sent. During this time slot,

only the receiver is allowed to transmit. If it has correctly received the mes

sage, it broadcasts an acknowledge; if not, it does nothing. When the network

is not busy, as in Figure 6.1, both the standard and Acknowledging Ethernets

behave in much the same way. Whenever a message is sent, the receiver will

acknowledge immediately following reception.

58

node 1 !message

node Z

node 3
I message

tlme

Figure 6.1: Lightly loaded network.

However, when the network is busy, we have the situation depicted in

Figure 6.2. In both types of Ethernet, the receiver will attempt to broadcast

an acknowledgement following the reception of a message. On the normal

Ethernet this acknowledge, with high probability, will collide with a transmis

sion from some other node. Since no useful information is being transmitted

during the transmission, some network bandwidth is lost. In the acknowledg

ing Ethernet, the network will be reserved following a message for that

message's acknowledgement. Therefore, there will be fewer collisions and the

network will be better utilized.

node 1

node 2

node a

eoW.lon

eoW.lon

detected

eoll1alon

eolllalon

detected

Figure 6.2: Heavily loaded network

tlme

The same principle can be used for published communications to ack

nowledge receipt by a recorder. A time slot is reserved after each message

59

transmission. During that time slot, the receiver waits for an acknowledge

from the recorder. If one appears it accepts the message and eventually ack

nowledges it. If not it discards the packet exactly as if it had received a. bad

packet. The transport protocol will eventually cause the message to be resent.

6.1.2. Token rings

A similar solution can be used for token rings. In a token ring, one or

more message slots circulate around the ring. The slot is preceded by a token

field, Figure 6.3. When a node wants to send a message, it waits for a token

indicating a free slot. It then removes the token and fills the slot with the

message. When the message reaches the destination, the message is removed

and the token is reinserted.

! token
field message

Figure 6.3: A message in a ring

For published communications we add an acknowledge field to the mes

sage slot, Figure 6.4. When a message is inserted into the ring, the ack

nowledge field is empty. Messages that have an empty acknowledge field are

ignored by all nodes except the recorder. When the message passes the

recorder, the recorder fills the acknowledge field and reads the message. If the

message is incorrectly received, the last few bytes of the message (usually the

checksum) are complemented, thereby invalidating the message. The message

can now be read by the node for which it was destined. If the recorder could

not successfully read it, neither will the receiver due to the invalidated check

sum.

60

token ack

fteld fteld
CJ'C

Figure 6.4: Token ring with acknowledge

6.2. Other configurations

So far, this thesis has considered only star configurations and broadcast
media. This is due to their property of having a single point at which all mes

sages can be intercepted and recorded. However, more general configurations
can be supported if we allow more than one recorder to be used. Each
recorder would publish messages for a disjoint subset of processors. In the
most extreme example, we could attach one recorder to each processor.

It is rare, however, for networks to be so disjoint. More likely are cluster
configurations made up of a number of a number of broadcast media network
connected via a store and forward network. CM*[Swan et al 77] is probably
the most famous of such cluster networks. However, a more common form of

cluster is the local area network. Many L-\N's are now attached to other
LAN's via general topology store and forward networks. For example, our
Ethernet at Berkeley is connected via the A.rpaNet to the ring nets at rvnT.

Each of our networks can be considered clusters of the ArpaNet.

·In these networks, a recorder can be attached to each cluster to perform
recovery for that cluster alone. The great advantage to this scheme is auto
nomous control. Each cluster can decide for itself how and whether or not it
will perform recovery. This is not possible with many other recovery mechan
ISms.

6.3. Multiple recorders for reliability

Recorders can be made more reliable by using TMR techniques, battery

backups, etc. However there is always the possibility that the recorder will
fail. Since the recorder will eventually recover, the system will not malfunc
tion. However, while the recorder is down, no messages can be sent on the
network.

Network availability can be increased by providing multiple recorders.

During normal operation~ all recorders record all messages. If there are n

recorders, n -1 can fail before the network becomes unavailable. There are
three problems associated with this:

1) Coordinating recovery of processes between different recorders

2} Ensuring that all recorders record each message

3) Recovering recorders that failed

A fairly simple solution can be applied to all three problems.

61

Assume a broadcast network with n processing nodes, labeled Pi, and m

recorders, labeled Ri. At any one time only one recorder is allowed to recover

any particular processing node. We achieve this by assigning an m element

vector, Vi to each processing node Pi. Each vector describes a priority order

ing for all the recorders. If processor Pi fails, it is recovered by the highest

priority recorder in Vi which is functioning.

For this recovery coordination to work, each recorder must be able to find

out whether or not the higher priority recorders are functioning. It does this

by querying them. Each recorder contains a copy of all the vectors, .PVi,
which reference it. Whenever a recorder, R, detects a failure of Pi, it queries

all recorders of higher priority than it in Vi to see if any are willing and able

to perform recovery. If they are not, or they do not answer in a set interval,

R performs the recovery. If some other recorder accepts the job, R performs

no recovery but continues to monitor node Pi. If Pi does not recover in a set

interval, R periodically requeries its higher priority nodes to see if they are

willing to recover. This is necessary to insure that R will restart the recovery

should the higher priority recorder fail during recovery of Pi.

Like the single recorder case, a positive acknowledgement is necessary

from each recorder to insure receipt of messages. Once again, the solutions

can be network specific. For the Ethernet, instead of adding one acknowledge

slot, we add one for each recorder. The same applies for the token ring. Each

message must have an acknowledge from all recorders before it can be used. If
a recorder in Pi detects the failure of a recorder of higher priority, it supplies

the acknowledges for that recorder in addition to its own acknowledge, even

though the higher priority recorder did not receive the message.

When a recorder recovers from a failure, it has to be brought up to date

since its published messages do not include those sent while it was down. This

could be done by stopping the system momentarily and having some other

recorder bring it up to date. However, we can instead use a method that takes

into account the periodic checkpointing of messages. Each process will eventu

ally checkpoint (or can be forced to). When a recorder restarts, it queries the

processing nodes for information about running processes, to rebuild its inter

nal tables. Eventually, all the processes will naturally checkpoint or be forced

to. The recorder will then be up to date and able to accept recovery responsi

bilities.

62

6.4. Transactions using published communications

In Chapter 2, we described the recovery aspects of atomic transactions.

As a recovery mechanism, they can be completely replaced by published com

munications. However, atomic transactions are typically used in distributed

data base applications also as a concurrency control mechanism. Transactions

are usually made up of a number of phases. Early phases obtain information,

work on it, and store on reliable storage intentions of updates to be performed

should the transaction commit. The last phase is a commit phase at which

point all processes taking part are committed to complete. Failures that occur

before the last stage begins cause all the processes to abort. The state of the

transaction, that is, whether or not it has committed, must be preserved across

failures so that all processes react correctly. If the processes reside on different

processors, then each processor must provide reliable storage for the intentions

and transaction state records.

With publishing, the transaction semantics remain the same. However,

there is no need to store intentions and transaction state in stable store.

When a crashed process recovers, its intentions and transaction state will be

rebuilt along with the rest of the process state. This means that each proces

sor need not have reliable storage for the processes taking part in transactions.

Only one reliable store is needed, the publishing storage. Depending on the

size and design of the reliable stores, the single reliable store may be cheaper

and more reliable than a number of them.

6.5. Debugging using published messages

One of the great problems of distributed debugging (or, for that matter,

of any kind of debugging) is finding out what happened after the fact. Often,

the trail to a problem's original cause has disappeared by the time the problem

becomes apparent. A programmer would like some way of backing up a pro

cess, or processes, to the point where the problem originally occurred.

Published communications offers this as a side effect. When a process dies

due to hardware failure, it is restarted at a previous point and brought up to

date. It would be easy to change the publishing system to allow this to be

done whenever a process terminates abnormally or whenever the programmer

requests it. If requested, the process could not only be restarted at a previous

checkpoint but also placed in a debug mode so that the programmer could

step through its previous execution and watch what happens. In order for this

to work, we need to the recorder would have to not the checkpoint at process

termination.

Of course, the error may have occurred before the last checkpoint. If this

is the case, the programmer may choose to abort the distributed computation

G3

and restart it with a larger or even infinite checkpoint interval in order to be

able to backup past the cause the next time it occurs. Alternatively, we might

cause all messages and checkpoints belonging to a debugged process to be

saved.

6.6. Optimizations

A number of optimizations can be performed to improve the performance

and reduce the cost of publishing. In this section, we investigate two optimiza

tions: not publishing recovery information for all processes and not publishing

intranode messages.

6.6.1. Not recovering all processes

In previous sections, we have assumed that all processes must be recover

able; therefore, all the discussions and analyses have assumed that all messages

must be published. However, there are a large number of processes which do

not need to be recoverable. H we do not publish messages for these processes,

we may greatly increase the capability of the recorder.

As an example, consider the processes measured to provide operating

points for the queuing simulation in Chapter 5. Among the processes meas

ured were a large number that could easily be restarted by the user should a

crash occur. In general these were equipotent commands that provided infor

mation either about the system's use (man, apropos) or about its current state

(ps, vmstat, pwd). If a crash were to occur during their execution, the user

may not want to restart them. In the case of the system status commands,

recovery may actually be the wrong action since the system state may have

changed considerably subsequent to the crash.

The measurements also contained a number of 1/0 intensive processes.

Most prominent among these were the disk to tape backups, which accounted

for 15% of the messages in the maximum disk access rate operating point. H

these processes were not considered recoverable, the recorder would be able to

support one more VAX on the network.

6.6.2. Recovering nodes rather than processes

As we have seen, the greatest steady state cost incurred by publishing

messages is the routing of intranode messages onto the network. :'his is done

to allow the recorder to publish all messages. Without it, we would not be

able to recover individual processes. However, not all sites may wish to

recover single processes. For a number of reasons, they may wish to recover a

node as a unit. Some may not be able to afford the extra cost for intranode

messages. Others may find that node crashes are much more prevalent than

single process failures, e.g., personal computers. For these systems, we would

64

like to treat the complete node as a single process. To do this with published

communications, the node's behavior will have to be deterministic upon its

input messages.

The only part of a node's behavior which can be determined from outside

of the node is its output messages. These messages are just the collection of

extranode messages sent by the processes within the node. Since the processes

within the node are deterministic upon their input messages, the node's output

messages will be deterministic upon its input messages provided that we can

guarantee two properties:

1) During recovery, all processes in the node will receive the same messages

in the same order as they did before the crash.

2) During recovery, the messages sent by the different processes will be inter-

leaved in the same way they were before the crash.

Messages received by a process are made up of both intranode and extranode

messages; to guarantee property 1, we have to synchronize the two. Also, the

order in which intranode messages are received by processes depends on the

scheduling. For example, if two processes are sending messages to a third, the

order that messages are sent will depend on how the execution of the two

processes are interleaved. To guarantee property 1, we must also make the

scheduling of processes deterministic. This will, not surprisingly, also ensure

property 2. If the sequencing of all messages sent by processes in the node is

ensured, then so must some subset of those messages. ·

Therefore, the problems facing us are:

1) How do we guarantee that messages from off node will be correctly

ordered with messages within the node?

2) How can we make scheduling deterministic?

Obviously, these problems have many solutions. We will outline one set of

solutions here that assume that we are willing to double the number of

extranode messages if that will allow us not to put intranode messages onto

the network.

Synchronizing intranode and extranode messages during recovery can be

done in the following way. Whenever an extranode message is received by a

node, the node sends a message to the recorder. The message contains the

unique identification of the extranode message and the intranode message b.st

sent before it. When the node is recovered, the recorder would send with each

replayed message the id of the intranode message it is to follow.

The ability to make a scheduler deterministic depends on the scheduler

used on any particular node. Since schedulers vary greatly with respect to

when processes can be interrupted and what fairness means in their

65

algorithms, we will not attempt to provide a general solution. However we

can give a simple example of a deterministic scheduler to provide at least a

starting point for others.

Our scheduler is a round robin scheduler that uses a single queue. The

scheduler always runs the first process in the queue. The process runs until it

has executed a predetermined number of instructions or until it attempts to

read a message and none exist in its queue. If it stops because no messages are

available it is taken off the queue. Otherwise it is put at the end of the queue.

Processes waiting for messages are put back at the head of the queue whenever

a message becomes available. In the absence of extranode messages, this algo

rithm is completely deterministic on the number of instructions executed. If a

process is run again, it will behave the same way it did the first time since all

factors controlling the algorithm (blocking of processes, unblocking of

processes, length of execution interval} depend on the number of instruction

executed.

The arrival of extranode messages, however, makes the algorithm non

deterministic since the extranode inputs are not synchronized with instruction

execution. To make the scheduler behave the same during recovery we need

to add some means of synchronizing the arrival of intranode messages with the

instruction stream. This can be done by changing the information in the mes

sage sent out whenever an extranode message is received. Since we are count

ing the number of instructions executed, we can inform the recorder of how

many instructions have been executed prior to receipt of the message. \Vhen

replaying messages to the node during recovery, the extranode message will

contain the instruction count. The recovering node will not use the message

until that time. Since this time is more accurate than the message ordering

information in the scheme for synchronizing intranode and extranode mes

sages, it can replace it.

In many processors, it may not be possible to stop a process after execut

ing some number of instructions. In that case, the scheduling algorithm can

count some other quantity such as the number of kernel calls made by the

processes. It is only necessary that the processes be deterministic upon that

counter.

6.7. Summary

In this chapter, we have shown that published communications is indeed

applicable to a large number of systems. We did this first by demonstrating

how the two most popular types of local network, rings and Ethernets, can be

changed to efficiently support message publishing. \Ve then extended the

number of applicable systems by showing that publishing is compatible with

66

clustered networks such as CM* and groups of LAN's connected via gateways.

This chapter also shows some possible secondary applications of message

publishing. First, message publishing can replace the need for per machine

stable storage in systems that use transactions for concurrency control. There

fore, publishing may greatly decrease the cost of such systems. We have also

shown how a distributed debugger may be designed using the published infor

mation. An extremely simple form of the debugger has been invaluable in the

debugging of the publishing system itself.

Finally, we have pointed out two ways to decrease the cost of the publish

ing system. By recovering all processes on a node as a unit, or by not recover

ing some processes, we can greatly reduce the number of messages that the

recorder needs to publish. Therefore, we can use a lower performance, lower

cost recorder if these optimizations are made.

67

CHAPTER 7

Conclusions

The intent of this research has been to develop a distributed recovery

mechanism that is transparent to the user, allows time bounded recovery, and

does not perturb non-failed parts of the system. Chapter 3 presented the basic

model of published communications. In it we showed how published communi

cations meets these goals.

However, published communications is meant to be much more than

another mechanism that meets a set of carefully worded recovery goals. It is

an attempt to make distributed systems simpler to deal with. By choosing a

system with a single communication mechanism and a deterministic model for

processes, we have greatly reduced the complexity of the system and, there

fore, the recovery system. A simple recovery system, transparent to the user,

in turn reduces the complexity of the programs.

\Ve hope not only that publishing will be accepted as a feasible recovery

technique, but that it will point the way to simpler distributed mechanisms.

7.1. Future Work

Our DEMOS/MP implementation is only the smallest usable subset of

published communications. Before it can be accepted by the community at

large, a complete version with checkpointing needs to be implemented in a

widely used system. Network devices should be adapted with the recorder

acknowledgement features to minimize the effects of publishing.

The variants discussed in the last chapter should be tried. Of special

importance is the integration of publishing and a distributed debugger. The

research in distributed systems is snowballing. However, current distributed

debuggers are, at best, primitive. The publishing debugger offers a valuable

tool in the ability to observe process histories and for obtaining fine control of

debugged processes.

An investigation should be made into integrating publishing with process

migration. This would allow processes to be recovered on processors other

than the one on which they failed. In many cases, this would greatly speed up

recovery time.

Finally, network protocols and distributed systems should be reengineered

with publishing in mind. Currently, distributed applications and protocols

68

assume the worst, that is, that processes will die and that messages will be

lost. Often, many redundant checks are made at different levels of programs

and protocols to be able to survive the expected problems. As a result,

current distributed applications tend to be much more complicated than their

non-distributed equivalents. It is our claim that software engineered under a

publishing system would be much less complicated and, perhaps, faster as a

result of fewer checks. It should be determined experimentally whether or not

this claim is correct.

69

BIDLIOGRAPHY

[Arens 81]
G. Arens, "Recovery of the Swallow Repository," Technical Report 252,
.MIT Lab for Computer Science (Jan. 81).

[Bartlett 81]
J. Bartlett, "A NonStop Kernel," Proc. of 8th ACM Symposium on
Operating Systems Principles, pp. 22-29 (Dec 81).

[Baskett et al 77]
F. Baskett, J. Howard, and J. Montague, "Task Communication in
DEMOS," Proc. of 6th ACM Symposium on Operating Systems Princa·
ples, pp. 23-32 (Dec 1977).

[Borg et al 83]
A. Borg, J. Baumbach, and S. Glazer, "A Message System Supporting
Fault Tolerance," Proc. of 9th ACA1 Symposium on Operating Systems
Principles, (Oct 1983).

[DARPA 82a]
DARPA, "Internet Protocol," RFC 791 (1982).

[DARPA 82b]
DARPA, "Transport Control Protocol," RFC 793 (1982).

[Diffie and Hellman 77]
W. Diffie and M. Hellman, "Exhaustive Cryptoanalysys of the NBS Data
Encryption Standard," Computer 10(6) pp. 7 4-84 (1977).

[Fabry 74]
R. Fabry, "Capability based addressing," CACM 17(7) pp. 403-412 (July
1974).

[Farber et al 73]
D. Farber, J. Feldman, F. Heinrich, M. Hopwood, K. Larson, D. Loomis,
and L. Rowe, "The Distributed Computing System," Proc. of 7th Annual
IEEE Computer Society International Conference, pp. 31-34 (Feb 1973).

iO

[Farmer & Newhall 69]
W. Farmer and E. Newhall, "An Experimental Distributed Switching Sys

tem to Handle Bursty Computer Traffic," Proc. of the ACM Symposium

on Data Communications, pp. 1-33 (Oct 1969).

[Fraser 79]
A. Fraser, "Datakit - a modular network for synchronous and asynchro

nous traffic," Conference Record, International Conference on Comm.,

pp. 20.1.1-20.1.3 (June 1979).

[Gray 78]
J. Gray, "Notes on Database Operating Systems," pp. 393-481 in Operat

ing Systems: An advanced course, Vol 60 of Lecture Notes in Comp. Sci.,

Springer-Verlag (1978).

[Hammer and Shipman 80]
M. Hammer and D. Shipman, "Reliability Mechanisms for SDD-1: A Sys

tem for Distributed Databases," ACAf TODS 5(4) pp. 431-466 (Dec 1980).

[Lampson and Sturgis 79]
B. Lampson and H. Sturgis, "Crash Recovery in a Distributed Data

Storage System," Technical Report, XEROX P ARC (1979).

[McDaniel 77]
G. McDaniel, ".METRIC: a kernel instrumentation system for distributed

environments," ACj\1 Proc. 6th Symposium on Operating Systems Prin

ciples, pp. 93-99 (Dec 1977).

[Metcalfe and Boggs 76]
R. Metcalfe and D. Boggs, "Ethernet: distributed packet switching for

local computer networks," CAC.i\11 9 pp. 395-404 (July 1976).

[NBS 75a]
National Bureau of Standards, "Data Encryption Standard," Federal

Register 40(52)(March 1975).

[NBS 75b]
National Bureau of Standards, "Data Encryption Standard," Federal

Register 40(149)(Aug 1975).

[Von Neuman 56]
J. Von Neuman, "Probabilistic logics," in Automata Studies, , Princeton

University Press, Princeton, NJ {1956).

71

[Pierce 72]
J. Pierce, "Network for Block Switching of Data," Bell System Technical

Journal, pp. 1133-1143 (July 1972).

[Powell 77]
M. Powell, "The DEMOS File System," Proc. of 6th ACA! Symposium

on Operating Systems Principles, pp. 33-42 (Dec 1977).

[Powell and Miller 83]
M. Powell and B. Miller, "Process tvfigration in DEMOS/MP," Proc. of

9th ACA! Symposium on Operating Systems Principles, (Oct 1983).

[Randell 75]
B. Randell, "System Structure for Software Fault Tolerance," IEEE

Transactions on Software Engineering SE-1(2) pp. 220-232 (June 1975).

[Randell 78]
B. Randell, "Reliable Computing Systems," pp. 282-292 in Operating Sys

tems: An advanced course, Vol 60 of Lecture Notes in Comp. Sci.,

Springer-Verlag (1978).

[Randell et al 78]
D. Randell, P. Lee, and P. Treleaven, "Reliability Issues in Computing

System Design," ACM Computing Surveys 10(2) pp. 123-166 (June

1978).

[Ritchie and Thompson 78]
D. Ritchie and K. Thompson, "UNIX Time-Sharing System," Bell System

Technical Journal 57(6) pp. 1905-1929 (1978).

[Russell 77]
D. Russell, "Process backup in producer-consumer systems," Proc. of 6th

ACM Symposium on Operating Systems Principles, pp. 151-169 (Dec

1977).

[Sauer et al 81]
C. Sauer, E. MacNair, and J. Kurose, "Computer/Communications Sys

tem Modeling with the Research Queuing Package Version 2," Technical

Report RA 128 (38950), IBM Watson Research Center (Nov 1981).

[Schneider 83]
F. Schneider, "Synchronization in Distributed Programs," ACi\1 Transac

tions on Programming Languages and Systems 4(2) pp. 179-195 (1983).

72

[Shoch and Hupp 79]
J. Shoch and J. Hupp, "Measured Performance of an Ethernet Local Net

work," Local Area Communications Network Symposium, (May 1979).

[Shooman 68]
M. Shooman, Probabilistic reliability; an engineering approach. 1968.

[Skeen and Stonebraker 81]
D. Skeen and M. Stonebraker, "A Formal Model of Crash Recovery in a

Distributed System," Proc. 5th Berkeley workshop on Distributed Data

and Computer Networks, (Feb 1981).

[Svobodova 80]
L. Svobodova, "Management of Object Histories in the Swallow Reposi

tory," Technical Report 243, MIT Lab for Computer Science (July 1980).

[Svobodova 81]
L. Svobodova, "Recovery in distributed processing systems," NATO

AGARD conference proceedings, (AGARD-CP-303)(June 1981).

[Swan et al 77]
R. Swan, S. Fuller, and D. Siewiorek, "Cm* - A Modular, Multi

Microprocessor," Proc. of the National Computer Conference, pp. 637-

644 (1977).

[Tokoro and Tamaru 77]
M. Tokoro and K. Tamaru, "Acknowledging Ethernet," Fall Compean

proceedings, pp. 320-325 (1977).

[UCB 82]
University of California, "4.2 BSD U~1X Programmer's Manual," Univer

sity of California, Berkeley (October 1982).

[Wilkinson 81]
W. Wilkinson, "Database Concurrency Control and Recovery in Local

Broadcast Networks," Ph.D. Thesis, University of \Visconsin at Madison

(1981).

[Wolf and Liu 78]
J. Wolf and M. Liu, "A Distributed Double-Loop Computer Network

(DDLCN)," Proc. Seventh Texas Conference on Computing Systems, pp.

6.19-6.34 (1978).

i3

[XEROX 81]
XEROX Corporation, "Internet Transport Protocols," XEROX System

Integration Standard 028112 (December 1981).

[Young 74]
J. Young, "A First Order Approximation to the Optimum Checkpoint

Interval," CACAf17{9) pp. 530-.531 (Sept 197 4).

[Zilog 80]
Zilog, Inc., "Architectural Features," Z8000 CPU Technical Manual (May

1980).

